
The Open Group Standard

ArchiMate
®
 3.1 Specification

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ii The Open Group Standard (2019)

Copyright © 2012-2019, The Open Group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,

electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the copyright owner.

It is fair use of this specification for implementers to use the names, labels, etc. contained within the specification. The

intent of publication of the specification is to encourage implementations of the specification.

The Open Group Standard

ArchiMate
®
 3.1 Specification

ISBN: 1-947754-30-0

Document Number: C197

Published by The Open Group, November 2019.

For information on licensing refer to www.opengroup.org/legal.

Comments relating to the material contained in this document may be submitted to:

The Open Group, Apex Plaza, Forbury Road, Reading, Berkshire, RG1 1AX, United Kingdom

or by electronic mail to:

ogspecs@opengroup.org

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

http://www.opengroup.org/legal
mailto:ogspecs@opengroup.org

ArchiMate® 3.1 Specification iii

Contents

1 Introduction ... 1

1.1 Objective ... 1
1.2 Overview ... 1
1.3 Conformance ... 1
1.4 Normative References ... 2
1.5 Terminology ... 2
1.6 Future Directions .. 2

2 Definitions ... 3

2.1 ArchiMate Core Framework ... 3
2.2 ArchiMate Core Language .. 3
2.3 Architecture View ... 3
2.4 Architecture Viewpoint ... 3
2.5 Aspect ... 3
2.6 Attribute .. 4
2.7 Composite Element ... 4
2.8 Concept ... 4
2.9 Conformance ... 4
2.10 Conforming Implementation ... 4
2.11 Core Element .. 4
2.12 Element ... 4
2.13 Layer ... 4
2.14 Model .. 4
2.15 Relationship .. 5

3 Language Structure ... 6

3.1 Language Design Considerations ... 6
3.2 Top-Level Language Structure ... 6
3.3 Layering of the ArchiMate Language ... 7
3.4 The ArchiMate Core Framework .. 8
3.5 The ArchiMate Full Framework ... 9
3.6 Abstraction in the ArchiMate Language ... 10
3.7 Concepts and their Notation ... 11
3.8 Use of Nesting .. 11
3.9 Use of Colors and Notational Cues ... 11

4 Generic Metamodel ... 13

4.1 Behavior and Structure Elements.. 13
4.1.1 Active Structure Elements ... 14
4.1.2 Behavior Elements .. 15
4.1.3 Passive Structure Elements ... 16

4.2 Specializations of Structure and Behavior Elements 16
4.3 Summary of Structure and Behavior Elements ... 18
4.4 Motivation Elements ... 19
4.5 Composite Elements ... 19

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

iv The Open Group Standard (2019)

4.5.1 Grouping .. 20
4.5.2 Location ... 21

5 Relationships ... 22

5.1 Structural Relationships .. 23
5.1.1 Composition Relationship ... 23
5.1.2 Aggregation Relationship .. 24
5.1.3 Assignment Relationship ... 25
5.1.4 Realization Relationship .. 26
5.1.5 Semantics of Structural Relationships ... 27

5.2 Dependency Relationships .. 28
5.2.1 Serving Relationship ... 28
5.2.2 Access Relationship .. 29
5.2.3 Influence Relationship ... 30
5.2.4 Association Relationship ... 31
5.2.5 Semantics of Dependency Relationships 32

5.3 Dynamic Relationships ... 33
5.3.1 Triggering Relationship ... 33
5.3.2 Flow Relationship.. 33
5.3.3 Semantics of Dynamic Relationships .. 34

5.4 Other Relationships... 34
5.4.1 Specialization Relationship ... 34
5.4.2 Semantics of Other Relationships ... 35

5.5 Relationship Connectors ... 35
5.5.1 Junction ... 35

5.6 Summary of Relationships .. 37
5.7 Derivation of Relationships .. 38

6 Motivation Elements ... 40

6.1 Motivation Elements Metamodel .. 40
6.2 Stakeholder, Driver, and Assessment ... 41

6.2.1 Stakeholder .. 41
6.2.2 Driver .. 41
6.2.3 Assessment .. 42
6.2.4 Example ... 42

6.3 Goal, Outcome, Principle, Requirement, and Constraint 43
6.3.1 Goal ... 43
6.3.2 Outcome .. 44
6.3.3 Principle .. 44
6.3.4 Requirement .. 45
6.3.5 Constraint .. 45
6.3.6 Example ... 46

6.4 Meaning and Value ... 47
6.4.1 Meaning ... 47
6.4.2 Value ... 47
6.4.3 Example ... 48

6.5 Summary of Motivation Elements .. 49
6.6 Relationships with Core Elements .. 50

7 Strategy Elements ... 51

7.1 Strategy Elements Metamodel .. 51

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification v

7.2 Structure Elements .. 51
7.2.1 Resource .. 51

7.3 Behavior Elements .. 52
7.3.1 Capability .. 52
7.3.2 Value Stream ... 53
7.3.3 Course of Action ... 54

7.4 Example .. 54
7.5 Summary of Strategy Elements .. 56
7.6 Relationships with Motivation and Core Elements 57

8 Business Layer .. 58

8.1 Business Layer Metamodel ... 58
8.2 Active Structure Elements .. 58

8.2.1 Business Actor ... 59
8.2.2 Business Role .. 60
8.2.3 Business Collaboration .. 60
8.2.4 Business Interface.. 61
8.2.5 Example ... 61

8.3 Behavior Elements .. 62
8.3.1 Business Process.. 63
8.3.2 Business Function.. 64
8.3.3 Business Interaction .. 65
8.3.4 Business Event .. 65
8.3.5 Business Service .. 66
8.3.6 Example ... 66

8.4 Passive Structure Elements ... 67
8.4.1 Business Object ... 67
8.4.2 Contract ... 68
8.4.3 Representation ... 68
8.4.4 Example ... 69

8.5 Composite Elements ... 69
8.5.1 Product .. 70
8.5.2 Example ... 71

8.6 Summary of Business Layer Elements ... 71

9 Application Layer ... 73

9.1 Application Layer Metamodel .. 73
9.2 Active Structure Elements .. 73

9.2.1 Application Component .. 74
9.2.2 Application Collaboration ... 75
9.2.3 Application Interface ... 75
9.2.4 Example ... 76

9.3 Behavior Elements .. 76
9.3.1 Application Function ... 77
9.3.2 Application Interaction .. 77
9.3.3 Application Process ... 78
9.3.4 Application Event .. 78
9.3.5 Application Service ... 79
9.3.6 Example ... 79

9.4 Passive Structure Elements ... 80
9.4.1 Data Object .. 80

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

vi The Open Group Standard (2019)

9.4.2 Example ... 81
9.5 Summary of Application Layer Elements ... 81

10 Technology Layer ... 83

10.1 Technology Layer Metamodel .. 83
10.2 Active Structure Elements .. 83

10.2.1 Node .. 84
10.2.2 Device .. 85
10.2.3 System Software .. 85
10.2.4 Technology Collaboration ... 86
10.2.5 Technology Interface ... 86
10.2.6 Path .. 87
10.2.7 Communication Network .. 87
10.2.8 Example ... 88

10.3 Behavior Elements .. 89
10.3.1 Technology Function ... 90
10.3.2 Technology Process ... 90
10.3.3 Technology Interaction .. 91
10.3.4 Technology Event.. 91
10.3.5 Technology Service ... 92
10.3.6 Example ... 92

10.4 Passive Structure Elements ... 93
10.4.1 Artifact .. 94
10.4.2 Example ... 94

10.5 Summary of Technology Layer Elements .. 95

11 Physical Elements ... 97

11.1 Physical Elements Metamodel .. 97
11.2 Active Structure Elements .. 97

11.2.1 Equipment ... 98
11.2.2 Facility ... 98
11.2.3 Distribution Network ... 99

11.3 Behavior Elements .. 99
11.4 Passive Structure Elements ... 99

11.4.1 Material ... 99
11.5 Example .. 100
11.6 Summary of Physical Elements .. 100

12 Relationships Between Core Layers ... 102

12.1 Alignment of the Business Layer and Lower Layers 102
12.2 Alignment of the Application and Technology Layers 103
12.3 Example .. 103

13 Implementation and Migration Elements .. 105

13.1 Implementation and Migration Elements Metamodel 105
13.2 Implementation and Migration Elements .. 105

13.2.1 Work Package.. 105
13.2.2 Deliverable .. 106
13.2.3 Implementation Event ... 106
13.2.4 Plateau ... 107
13.2.5 Gap .. 107

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification vii

13.2.6 Example ... 108
13.2.7 Summary of Implementation and Migration Elements 108

13.3 Relationships ... 109
13.4 Relationships with Other Aspects and Layers .. 109

14 Stakeholders, Architecture Views, and Viewpoints .. 111

14.1 Introduction ... 111
14.2 Stakeholders and Concerns ... 111
14.3 Architecture Views and Viewpoints ... 112
14.4 Viewpoint Mechanism .. 113

14.4.1 Defining and Classifying Viewpoints ... 114
14.4.2 Creating the View .. 115

14.5 Example Viewpoints ... 115

15 Language Customization Mechanisms ... 116

15.1 Adding Attributes to ArchiMate Elements and Relationships 116
15.2 Specialization of Elements and Relationships .. 117

15.2.1 Examples of Specializations of Business Layer

Elements (Informative) .. 118
15.2.2 Examples of Specializations of Application Layer

Elements (Informative) .. 119
15.2.3 Examples of Specializations of Technology Layer

Elements (Informative) .. 119
15.2.4 Examples of Specializations of Physical Elements

(Informative) ... 120
15.2.5 Examples of Specializations of Motivation Elements

(Informative) ... 120
15.2.6 Examples of Specializations of Strategy Elements

(Informative) ... 121
15.2.7 Examples of Specializations of Implementation and

Migration Elements (Informative) ... 122
15.2.8 Examples of Specializations of Composite Elements

(Informative) ... 122
15.2.9 Examples of Specializations of Relationships

(Informative) ... 123

A Summary of Language Notation ... 124

A.1 Core Elements ... 125
A.2 Motivation, Strategy, Implementation and Migration Elements 126
A.3 Relationships ... 127

B Relationships (Normative) .. 128

B.1 Specification of Derivation Rules ... 128
B.2 Derivation Rules for Valid Relationships ... 128

B.2.1 Valid Derivations for Specialization Relationships 128
B.2.2 Valid Derivations for Structural Relationships 129
B.2.3 Valid Derivations for Dependency Relationships 130
B.2.4 Valid Derivations for Dynamic Relationships 131

B.3 Derivation Rules for Potential Relationships .. 133
B.3.1 Potential Derivation for Specialization Relationships 134

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

viii The Open Group Standard (2019)

B.3.2 Potential Derivation for Structural and Dependency

Relationships ... 137
B.3.3 Potential Derivation for Dependency Relationships 137
B.3.4 Potential Derivation for Dynamic Relationships 138

B.4 Restrictions on Applying Derivation Rules .. 139
B.5 Relationship Tables... 140
B.6 Grouping, Plateau, and Relationships Between Relationships 151

C Example Viewpoints ... 152

C.1 Basic Viewpoints in the ArchiMate Language ... 152
C.1.1 Organization Viewpoint .. 154
C.1.2 Application Structure Viewpoint ... 155
C.1.3 Information Structure Viewpoint .. 155
C.1.4 Technology Viewpoint .. 156
C.1.5 Layered Viewpoint .. 157
C.1.6 Physical Viewpoint.. 157
C.1.7 Product Viewpoint ... 158
C.1.8 Application Usage Viewpoint ... 159
C.1.9 Technology Usage Viewpoint ... 160
C.1.10 Business Process Cooperation Viewpoint 160
C.1.11 Application Cooperation Viewpoint .. 161
C.1.12 Service Realization Viewpoint .. 162
C.1.13 Implementation and Deployment Viewpoint 163

C.2 Motivation Viewpoints ... 163
C.2.1 Stakeholder Viewpoint .. 164
C.2.2 Goal Realization Viewpoint .. 165
C.2.3 Requirements Realization Viewpoint .. 165
C.2.4 Motivation Viewpoint ... 166

C.3 Strategy Viewpoints .. 167
C.3.1 Strategy Viewpoint .. 167
C.3.2 Capability Map Viewpoint .. 168
C.3.3 Value Stream Viewpoint ... 168
C.3.4 Outcome Realization Viewpoint ... 169
C.3.5 Resource Map Viewpoint .. 169

C.4 Implementation and Migration Viewpoints .. 170
C.4.1 Project Viewpoint .. 170
C.4.2 Migration Viewpoint ... 171
C.4.3 Implementation and Migration Viewpoint 171

D Relationship to Other Standards, Specifications, and Guidance Documents 173

D.1 The TOGAF Framework .. 173
D.2 The BIZBOK Guide.. 174
D.3 BPMN ... 174
D.4 UML ... 175
D.5 BMM ... 176

E Changes from Version 2.1 to Version 3.1 ... 177

E.1 Changes from Version 2.1 to Version 3.0.1 .. 177
E.2 Changes from Version 3.0.1 to Version 3.1 .. 178

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification ix

List of Figures

Figure 1: Top-Level Hierarchy of ArchiMate Concepts .. 7
Figure 2: ArchiMate Core Framework ... 8
Figure 3: ArchiMate Full Framework .. 9
Figure 4: Hierarchy of Behavior and Structure Elements .. 13
Figure 5: Behavior and Structure Elements Metamodel .. 14
Figure 6: Generic Internal Active Structure Element Notation .. 15
Figure 7: Generic External Active Structure Elements (Interface) Notation 15
Figure 8: Generic Internal Behavior Element Notation .. 15
Figure 9: Generic External Behavior Element (Service) Notation ... 15
Figure 10: Generic Event Notation... 16
Figure 11: Generic Passive Structure Element Notation .. 16
Figure 12: Specializations of Core Elements ... 16
Figure 13: Generic Process Notation .. 17
Figure 14: Generic Function Notation .. 17
Figure 15: Generic Collaboration Notation .. 17
Figure 16: Generic Interaction Notation ... 17
Figure 17: Generic Motivation Element Notation .. 19
Figure 18: Composite Elements ... 20
Figure 19: Grouping Notation .. 20
Figure 20: Location Notation ... 21
Figure 21: Overview of Relationships .. 22
Figure 22: Composition Notation ... 24
Figure 23: Aggregation Notation.. 24
Figure 24: Assignment Notation .. 25
Figure 25: Realization Notation ... 26
Figure 26: Serving Notation ... 28
Figure 27: Access Notation .. 29
Figure 28: Influence Notation .. 31
Figure 29: Association Notation ... 31
Figure 30: Triggering Notation .. 33
Figure 31: Flow Notation ... 33
Figure 32: Specialization Notation ... 34
Figure 33: Junction Notation .. 35
Figure 34: Motivation Elements Metamodel .. 40
Figure 35: Stakeholder Notation .. 41
Figure 36: Driver Notation ... 42
Figure 37: Assessment Notation ... 42
Figure 38: Goal Notation .. 44
Figure 39: Outcome Notation ... 44
Figure 40: Principle Notation ... 45
Figure 41: Requirement Notation ... 45
Figure 42: Constraint Notation ... 46
Figure 43: Meaning Notation ... 47
Figure 44: Value Notation .. 48
Figure 45: Relationships Between Motivation Elements and Core Elements 50

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

x The Open Group Standard (2019)

Figure 46: Strategy Elements Metamodel .. 51
Figure 47: Resource Notation ... 52
Figure 48: Capability Notation ... 53
Figure 49: Value Stream Notation .. 54
Figure 50: Course of Action Notation .. 54
Figure 51: Relationships Between Strategy Elements and Motivation and Core Elements 57
Figure 52: Business Layer Metamodel ... 58
Figure 53: Business Internal Active Structure Elements .. 59
Figure 54: Business Actor Notation ... 60
Figure 55: Business Role Notation ... 60
Figure 56: Business Collaboration Notation .. 61
Figure 57: Business Interface Notation .. 61
Figure 58: Business Internal Behavior Elements ... 63
Figure 59: Business Process Notation .. 64
Figure 60: Business Function Notation .. 65
Figure 61: Business Interaction Notation ... 65
Figure 62: Business Event Notation ... 66
Figure 63: Business Service Notation .. 66
Figure 64: Business Passive Structure Elements .. 67
Figure 65: Business Object Notation .. 68
Figure 66: Contract Notation .. 68
Figure 67: Representation Notation.. 69
Figure 68: Product Metamodel ... 70
Figure 69: Product Notation ... 71
Figure 70: Application Layer Metamodel .. 73
Figure 71: Application Internal Active Structure Elements ... 74
Figure 72: Application Component Notation ... 75
Figure 73: Application Collaboration Notation .. 75
Figure 74: Application Interface Notation ... 76
Figure 75: Application Internal Behavior Elements ... 77
Figure 76: Application Function Notation ... 77
Figure 77: Application Interaction Notation .. 78
Figure 78: Application Process Notation ... 78
Figure 79: Application Event Notation .. 79
Figure 80: Application Service Notation .. 79
Figure 81: Data Object Notation .. 81
Figure 82: Technology Layer Metamodel .. 83
Figure 83: Technology Active Structure Elements .. 84
Figure 84: Node Notation ... 85
Figure 85: Device Notation .. 85
Figure 86: System Software Notation .. 86
Figure 87: Technology Collaboration Notation ... 86
Figure 88: Technology Interface Notation ... 87
Figure 89: Path Notation .. 87
Figure 90: Communication Network Notation ... 88
Figure 91: Technology Internal Behavior Elements .. 89
Figure 92: Technology Function Notation ... 90
Figure 93: Technology Process Notation ... 90
Figure 94: Technology Interaction Notation .. 91
Figure 95: Technology Event Notation .. 91
Figure 96: Technology Service Notation ... 92

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification xi

Figure 97: Technology Passive Structure Elements ... 93
Figure 98: Artifact Notation ... 94
Figure 99: Physical Elements Metamodel .. 97
Figure 100: Equipment Notation .. 98
Figure 101: Facility Notation ... 98
Figure 102: Distribution Network Notation ... 99
Figure 103: Material Notation .. 99
Figure 104: Relationships Between Business Layer and Application and Technology

Layer Elements ... 102
Figure 105: Relationships Between Application Layer and Technology Layer Elements 103
Figure 106: Implementation and Migration Metamodel .. 105
Figure 107: Work Package Notation .. 106
Figure 108: Deliverable Notation ... 106
Figure 109: Implementation Event Notation .. 107
Figure 110: Plateau Notation .. 107
Figure 111: Gap Notation ... 108
Figure 112: Relationships of Implementation and Migration Elements with Core Elements 109
Figure 113: Relationships of Implementation and Migration Elements with

Motivation Elements ... 110
Figure 114: Conceptual Model of an Architecture Description (from [14]) 112
Figure 115: Framing Stakeholder Concerns using the Viewpoint Mechanism 114
Figure 116: Correspondence Between the ArchiMate Language and the TOGAF ADM.......... 173

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

xii The Open Group Standard (2019)

List of Examples

Example 1: Grouping ... 21
Example 2: Composition .. 24
Example 3: Aggregation ... 25
Example 4: Assignment .. 26
Example 5: Realization .. 27
Example 6: Semantics of Structural Relationships... 27
Example 7: Serving .. 29
Example 8: Access ... 29
Example 9: Influence .. 31
Example 10: Association .. 32
Example 11: Semantics of Dependency Relationships .. 33
Example 12: Triggering .. 33
Example 13: Flow .. 34
Example 14: Specialization .. 35
Example 15: (And) Junction ... 36
Example 16: Or Junction .. 36
Example 17: Derivation from a Chain of Relationships... 38
Example 18: Stakeholder, Driver, and Assessment .. 43
Example 19: Goal, Outcome, Principle, Requirement, and Constraint .. 46
Example 20: Meaning and Value ... 48
Example 21: Capability, Resource, and Course of Action ... 55
Example 22: Value Stream with Capability Cross-Mapping ... 56
Example 23: Business Active Structure Elements ... 62
Example 24: Business Behavior Elements ... 67
Example 25: Business Passive Structure Elements .. 69
Example 26: Business Composite Element: Product ... 71
Example 27: Application Active Structure Elements ... 76
Example 28: Application Behavior Elements .. 80
Example 29: Application Passive Structure Elements ... 81
Example 30: Technology Active Structure Elements... 89
Example 31: Technology Behavior Elements .. 93
Example 32: Technology Passive Structure Element: Artifact .. 94
Example 33: Physical Elements ... 100
Example 34: Cross-Layer Relationships .. 104
Example 35: Implementation and Migration Elements .. 108
Example 36: Specializations of Business Layer and Motivation Elements 121
Example 37: Transitivity of Specialization .. 129
Example 38: Derivation of Structural Relationships .. 129
Example 39: Derivation from a Chain of Structural Relationships .. 130
Example 40: Derivation from a Dependency and a Structural Relationship in Line 130
Example 41: Derivation from a Dependency and a Structural Relationship in the Opposite

Direction ... 130
Example 42: Derivation from a Dynamic and a Structural Relationship in Line 131
Example 43: Derivation from a Flow and a Structural Relationship in the Opposite

Direction ... 131

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification xiii

Example 44: Derivation from a Triggering and a Structural Relationship in Line 132
Example 45: Derivation from Dynamic Relationships... 132
Example 46: Derivation from Triggering Relationships .. 132
Example 47: Derivation from Triggering and Structural Relationships 133
Example 48: Examples of Potential Derivation ... 134
Example 49: Potential Derivation from a Specialization and Another Relationship in Line 134
Example 50: Potential Derivation from a Specialization and Another Relationship in the

Opposite Direction .. 135
Example 51: Potential Derivation from Another Relationship and a Specialization in Line 135
Example 52: Potential Derivation from Another Relationship and a Specialization in Line 136
Example 53: Specializations Used in Potential Derivations .. 136
Example 54: Potential Derivation from a Dependency and a Structural Relationship in Line .. 137
Example 55: Potential Derivation from a Dependency and a Structural Relationship in the

Opposite Direction .. 137
Example 56: Potential Derivation from Two Dependency Relationships 138
Example 57: Potential Derivation from a Dynamic and a Structural Relationship in Line 138
Example 58: Potential Derivation from a Dynamic and a Structural Relationship in the

Opposite Direction .. 138
Example 59: Potential Derivation from Two Flow Relationships ... 139
Example 60: Potential Derivation from a Triggering and Structural Relationships 139

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

xiv The Open Group Standard (2019)

List of Tables

Table 1: Core Elements .. 18
Table 2: Motivation Element .. 19
Table 3: Relationships .. 37
Table 4: Motivation Elements .. 49
Table 5: Strategy Elements ... 56
Table 6: Business Layer Elements ... 71
Table 7: Application Layer Elements ... 81
Table 8: Technology Layer Elements ... 95
Table 9: Physical Elements .. 100
Table 10: Implementation and Migration Elements ... 108
Table 11: Profile Example .. 117
Table 12: Example Specializations of Business Layer Elements ... 118
Table 13: Example Specializations of Application Layer Elements .. 119
Table 14: Example Specializations of Technology Layer Elements .. 119
Table 15: Example Specializations of Physical Elements .. 120
Table 16: Example Specializations of Motivation Elements.. 120
Table 17: Example Specializations of Strategy Elements .. 121
Table 18: Example Specializations of Implementation and Migration Elements 122
Table 19: Example Specializations of Composite Elements .. 122
Table 20: Example Specializations of Relationships ... 123
Table 21: Basic Viewpoints ... 153
Table 22: Organization Viewpoint Description ... 154
Table 23: Application Structure Viewpoint Description .. 155
Table 24: Information Structure Viewpoint Description .. 156
Table 25: Technology Viewpoint Description ... 156
Table 26: Layered Viewpoint Description ... 157
Table 27: Physical Viewpoint Description ... 157
Table 28: Product Viewpoint Description .. 158
Table 29: Application Usage Viewpoint Description... 159
Table 30: Technology Usage Viewpoint Description .. 160
Table 31: Business Process Cooperation Viewpoint Description .. 161
Table 32: Application Cooperation Viewpoint Description ... 161
Table 33: Service Realization Viewpoint Description ... 162
Table 34: Implementation and Deployment Viewpoint Description .. 163
Table 35: Stakeholder Viewpoint Description ... 164
Table 36: Goal Realization Viewpoint Description ... 165
Table 37: Requirements Realization Viewpoint Description ... 165
Table 38: Motivation Viewpoint Description ... 166
Table 39: Strategy Viewpoint Description ... 167
Table 40: Capability Map Viewpoint Description ... 168
Table 41: Value Stream Viewpoint Description .. 168
Table 42: Outcome Realization Viewpoint Description ... 169
Table 43: Resource Map Viewpoint Description ... 169
Table 44: Project Viewpoint Description ... 170

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification xv

Table 45: Migration Viewpoint Description .. 171
Table 46: Implementation and Migration Viewpoint Description ... 172

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

xvi The Open Group Standard (2019)

Preface

The Open Group

The Open Group is a global consortium that enables the achievement of business objectives

through technology standards. Our diverse membership of more than 700 organizations includes

customers, systems and solutions suppliers, tools vendors, integrators, academics, and

consultants across multiple industries.

The mission of The Open Group is to drive the creation of Boundaryless Information Flow™

achieved by:

 Working with customers to capture, understand, and address current and emerging

requirements, establish policies, and share best practices

 Working with suppliers, consortia, and standards bodies to develop consensus and

facilitate interoperability, to evolve and integrate specifications and open source

technologies

 Offering a comprehensive set of services to enhance the operational efficiency of

consortia

 Developing and operating the industry’s premier certification service and encouraging

procurement of certified products

Further information on The Open Group is available at www.opengroup.org.

The Open Group publishes a wide range of technical documentation, most of which is focused

on development of Open Group Standards and Guides, but which also includes white papers,

technical studies, certification and testing documentation, and business titles. Full details and a

catalog are available at www.opengroup.org/library.

This Document

This document is the ArchiMate
®
 3.1 Specification, a standard of The Open Group. It has been

developed and approved by The Open Group.

This edition of the standard includes a number of corrections, clarifications, and improvements

to the previous edition, as well as several additions.

Intended Audience

The intended audience of this standard is threefold:

 All those working to shape and implement complex organization change

Typical job titles include Enterprise Architecture practitioners, Business Architects, IT

architects, application architects, data architects, information architects, process architects,

infrastructure architects, software architects, systems architects, solutions architects,

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

http://www.opengroup.org/
http://www.opengroup.org/library

ArchiMate® 3.1 Specification xvii

product/service managers, senior and operational management, project leaders, and

anyone working within the reference framework defined by an Enterprise Architecture.

 Those who intend to implement the ArchiMate language in a software tool

They will find a complete and detailed description of the language in this document.

 The academic community, on which we rely for amending and improving the language

based on state-of-the-art research in the architecture field

Structure

The structure of this standard is as follows:

 Chapter 1, Introduction, provides the introduction to this standard, including the

objectives, a brief overview, conformance requirements, and terminology

 Chapter 2, Definitions, defines the general terms used in this standard

 Chapter 3, Language Structure, describes the structure of the ArchiMate modeling

language, including the top-level structure, layering, the ArchiMate Core Framework, and

the ArchiMate Full Framework

 Chapter 4, Generic Metamodel, describes the structure and elements of the ArchiMate

generic metamodel

 Chapter 5, Relationships, describes the relationships in the language

 Chapter 6, Motivation Elements, describes the concepts for expressing the motivation for

an architecture, together with examples

 Chapter 7, Strategy Elements, provides elements for modeling the enterprise at a strategic

level, together with examples

 Chapter 8, Business Layer, covers the definition and usage of the Business Layer

elements, together with examples

 Chapter 9, Application Layer, covers the definition and usage of the Application Layer

elements, together with examples

 Chapter 10, Technology Layer, covers the definition and usage of the Technology Layer

elements, together with examples

 Chapter 11, Physical Elements, describes the language elements for modeling the physical

world, together with examples

 Chapter 12, Relationships Between Core Layers, covers the relationships between

different layers of the language

 Chapter 13, Implementation and Migration Elements, describes the language elements for

expressing the implementation and migration aspects of an architecture (e.g., projects,

programs, plateaus, and gaps)

 Chapter 14, Stakeholders, Architecture Views, and Viewpoints, describes the ArchiMate

viewpoint mechanism

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

xviii The Open Group Standard (2019)

 Chapter 15, Language Customization Mechanisms, describes how to customize the

ArchiMate language for specialized or domain-specific purposes

 Appendix A, Summary of Language Notation, is an informative appendix

 Appendix B, Relationships, is a normative appendix detailing the required relationships

between elements of the language and the rules to derive these

 Appendix C, Example Viewpoints, presents a set of architecture viewpoints, developed in

ArchiMate notation based on practical experience

All viewpoints are described in detail. The appendix specifies the elements, relationships,

usage guidelines, goals, and target groups for each viewpoint.

 Appendix D, Relationship to Other Standards, Specifications, and Guidance Documents,

describes the relationships of the ArchiMate language to other standards and

specifications, including the TOGAF
®
 framework, the BIZBOK

®
 Guide, BPMN™,

UML
®
, and BMM™

 Appendix E, Changes from Version 2.1 to Version 3.1, is an informative appendix

outlining the changes in the standard between Version 2.1 and Version 3.1

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification xix

Trademarks

ArchiMate
®
, DirecNet

®
, Making Standards Work

®
, Open O

®
 logo, Open O and Check

®

Certification logo, OpenPegasus
®
, Platform 3.0

®
, The Open Group

®
, TOGAF

®
, UNIX

®
,

UNIXWARE
®
, and the Open Brand X

®
 logo are registered trademarks and Agile Architecture

Framework™, Boundaryless Information Flow™, Build with Integrity Buy with Confidence™,

Dependability Through Assuredness™, Digital Practitioner Body of Knowledge™, DPBoK™,

EMMM™, FACE™, the FACE™ logo, IT4IT™, the IT4IT™ logo, O-AAF™, O-DEF™, O-

HERA™, O-PAS™, Open FAIR™, Open Platform 3.0™, Open Process Automation™, Open

Subsurface Data Universe™, Open Trusted Technology Provider™, O-SDU™, Sensor

Integration Simplified™, SOSA™, and the SOSA™ logo are trademarks of The Open Group.

A Guide to the Business Architecture Body of Knowledge
®
 and BIZBOK

®
 are registered

trademarks of the Business Architecture Guild.

Java
®
 is a registered trademark of Oracle and/or its affiliates.

UML
®
 and Unified Modeling Language

®
 are registered trademarks and BMM™, BPMN™,

Business Motivation Model™, and Business Process Modeling Notation™ are trademarks of the

Object Management Group.

All other brands, company, and product names are used for identification purposes only and may

be trademarks that are the sole property of their respective owners.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

xx The Open Group Standard (2019)

Acknowledgements

The Open Group gratefully acknowledges The Open Group ArchiMate Forum for developing

this standard.

The Open Group gratefully acknowledges the contribution of the following people in the

development of this and earlier versions of this standard:

 Iver Band, EA Principals & Cambia Health Solutions

 Thorbjørn Ellefsen, Capgemini

 William Estrem, Metaplexity Associates

 Maria-Eugenia Iacob, University of Twente

 Henk Jonkers, BiZZdesign

 Marc M. Lankhorst, BiZZdesign

 Dag Nilsen, Biner

 Carlo Poli, Macaw

 Erik (H.A.) Proper, Luxembourg Institute for Science and Technology & Radboud

University Nijmegen

 Dick A.C. Quartel, BiZZdesign

 G. Edward Roberts, Elparazim

 Jean-Baptiste Sarrodie, Accenture

 Serge Thorn, Metaplexity Fellow

The Open Group and ArchiMate project team would like to thank in particular the following

individuals for their support and review of this and earlier versions of this standard:

 Adina Aldea

 Mary Beijleveld

 Alexander Bielowski

 Remco de Boer

 Adrian Campbell

 John Coleshaw

 Jörgen Dahlberg

 Garry Doherty

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification xxi

 Ingvar Elmér

 Wilco Engelsman

 Roland Ettema

 Henry M. Franken

 Mats Gejnevall

 Sonia González

 Kirk Hansen

 Jos van Hillegersberg

 Andrew Josey

 Ryan Kennedy

 Louw Labuschagne

 Antoine Lonjon

 Veer Muchandi

 Michelle Nieuwoudt

 Erwin Oord

 Antonio Plais, Centus

 Daniel Simon

 Gerben Wierda

 Egon Willemsz

The first version of this standard was largely produced by the ArchiMate project. The Open

Group gratefully acknowledges the contribution of the many people – former members of the

project team – who have contributed to it.

The ArchiMate project comprised the following organizations:

 ABN AMRO

 Centrum voor Wiskunde en Informatica

 Dutch Tax and Customs Administration

 Leiden Institute of Advanced Computer Science

 Novay

 Ordina

 Radboud Universiteit Nijmegen

 Stichting Pensioenfonds ABP

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

xxii The Open Group Standard (2019)

Referenced Documents

The following documents are referenced in this standard. These references are informative.

(Please note that the links below are good at the time of writing but cannot be guaranteed for the

future.)

[1] Enterprise Architecture at Work: Modeling, Communication, and Analysis, Third

Edition, M.M. Lankhorst et al., Springer, 2013.

[2] The Anatomy of the ArchiMate
®
 Language, M.M. Lankhorst, H.A. Proper,

H. Jonkers, International Journal of Information Systems Modeling and Design

(IJISMD), 1(1):1-32, January-March 2010.

[3] Extending Enterprise Architecture Modeling with Business Goals and

Requirements, W. Engelsman, D.A.C. Quartel, H. Jonkers, M.J. van Sinderen,

Enterprise Information Systems, 5(1):9-36, 2011.

[4] TOGAF
®
 Version 9.2, The Open Group Standard (C182), April 2018, published by

The Open Group; refer to: www.opengroup.org/library/c182.

[5] Extending and Formalizing the Framework for Information Systems Architecture,

J.F. Sowa, J.A. Zachman, IBM Systems Journal, Volume 31, No. 3, pp.590-616,

1992.

[6] TOGAF
®
 Framework and ArchiMate

®
 Modeling Language Harmonization: A

Practitioner’s Guide to Using the TOGAF
®
 Framework and the ArchiMate

®

Language, White Paper (W14C), December 2014, published by The Open Group;

refer to: www.opengroup.org/library/w14c.

[7] Unified Modeling Language
®
: Superstructure, Version 2.0 (formal/05-07-04),

Object Management Group, August 2005.

[8] Unified Modeling Language
®
: Infrastructure, Version 2.4.1 (formal/201-08-05),

Object Management Group, August 2011.

[9] A Business Process Design Language, H. Eertink, W. Janssen, P. Oude Luttighuis,

W. Teeuw, C. Vissers, in Proceedings of the First World Congress on Formal

Methods, Toulouse, France, September 1999.

[10] Enterprise Business Architecture: The Formal Link Between Strategy and Results,

R. Whittle, C.B. Myrick, CRC Press, 2004.

[11] Composition of Relations in Enterprise Architecture, R. van Buuren, H. Jonkers,

M.E. Iacob, P. Strating, in Proceedings of the Second International Conference on

Graph Transformation, pp.39-53, edited by H. Ehrig et al., Rome, Italy, 2004.

[12] Business Process Modeling Notation™ (BPMN™), Version 2.0 (formal/2011-01-

03), Object Management Group, 2011.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

http://www.opengroup.org/library/c182
http://www.opengroup.org/library/w14

ArchiMate® 3.1 Specification xxiii

[13] Performance and Cost Analysis of Service-Oriented Enterprise Architectures,

H. Jonkers, M.E. Iacob, in Global Implications of Modern Enterprise Information

Systems: Technologies and Applications, edited by A. Gunasekaran, IGI Global,

2009.

[14] ISO/IEC 42010:2011, Systems and Software Engineering – Recommended Practice

for Architectural Description of Software-Intensive Systems, Edition 1.

[15] Business Motivation Model™ (BMM™), Version 1.1 (formal/2010-05-01), Object

Management Group, 2010.

[16] Using the ArchiMate
®
 Language with UML

®
, White Paper (W134), September

2013, published by The Open Group; refer to: www.opengroup.org/library/w134.

[17] TOGAF
®
 Series Guide: Value Streams (G178), October 2017, published by The

Open Group: refer to: www.opengroup.org/library/g178.

[18] Business Architecture Guild. A Guide to the Business Architecture Body of

Knowledge
®
 (BIZBOK

®
 Guide), Version 7.0, 2018; refer to:

www.businessarchitectureguild.org.

[19] TOGAF
®
 Series Guide: The TOGAF

®
 Technical Reference Model (TRM) (G175),

September 2017, published by The Open Group: refer to:

www.opengroup.org/library/g175.

[20] ArchiMate
®
 Model Exchange File Format for the ArchiMate Modeling Language,

Version 3.0, The Open Group Standard (C174), May 2017, published by The Open

Group; refer to: www.opengroup.org/library/c174.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

http://www.opengroup.org/library/w134
http://www.opengroup.org/library/g170
http://www.businessarchitectureguild.org/
http://www.opengroup.org/library/g175
http://www.opengroup.org/library/c174

xxiv The Open Group Standard (2019)

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 1

1 Introduction

1.1 Objective

This standard is the specification of the ArchiMate Enterprise Architecture modeling language, a

visual language with a set of default iconography for describing, analyzing, and communicating

many concerns of Enterprise Architectures as they change over time. The standard provides a set

of entities and relationships with their corresponding iconography for the representation of

Architecture Descriptions. The ArchiMate ecosystem also supports an exchange format in XML

which allows model and diagram exchange between tools [20].

1.2 Overview

An Enterprise Architecture is typically developed because key people have concerns that need to

be addressed by the business and IT systems within an organization. Such people are commonly

referred to as the “stakeholders” of the Enterprise Architecture. The role of the architect is to

address these concerns by identifying and refining the motivation and strategy expressed by

stakeholders, developing an architecture, and creating views of the architecture that show how it

addresses and balances stakeholder concerns. Without an Enterprise Architecture, it is unlikely

that all concerns and requirements are considered and addressed.

The ArchiMate Enterprise Architecture modeling language provides a uniform representation for

diagrams that describe Enterprise Architectures. It includes concepts for specifying inter-related

architectures, specific viewpoints for selected stakeholders, and language customization

mechanisms. It offers an integrated architectural approach that describes and visualizes different

architecture domains and their underlying relations and dependencies. Its language framework

provides a structuring mechanism for architecture domains, layers, and aspects. It distinguishes

between the model elements and their notation, to allow for varied, stakeholder-oriented

depictions of architecture information. The language uses service-orientation to distinguish and

relate the Business, Application, and Technology Layers of Enterprise Architectures, and uses

realization relationships to relate concrete elements to more abstract elements across these

layers.

1.3 Conformance

The ArchiMate language may be implemented in software used for Enterprise Architecture

modeling. For the purposes of this standard, the conformance requirements for implementations

of the language given in this section apply. A conforming implementation:

1. Shall support the language structure, generic metamodel, relationships, layers, cross-layer

dependencies, and other elements as specified in Chapters 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

and 13

2. Shall support the standard iconography as specified in Chapters 4, 5, 6, 7, 8, 9, 10, 11, and

13, and summarized in Appendix A

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

2 The Open Group Standard (2019)

3. Shall support the viewpoint mechanism as specified in Chapter 14

4. Shall support the language customization mechanisms as specified in Chapter 15 in an

implementation-defined manner

5. Shall support the relationships between elements as specified in Appendix B

6. May support the example viewpoints described in Appendix C

Readers are advised to check The Open Group website for additional conformance and

certification requirements referencing this standard.

1.4 Normative References

None.

1.5 Terminology

For the purposes of this standard, the following terminology definitions apply:

Can Describes a possible feature or behavior available to the user.

Deprecated Items identified as deprecated may be removed in the next version of this standard.

Implementation-defined

Describes a value or behavior that is not defined by this standard but is selected by

an implementor of a software tool. The value or behavior may vary among

implementations that conform to this standard. A user should not rely on the

existence of the value or behavior. The implementor shall document such a value or

behavior so that it can be used correctly by a user.

May Describes a feature or behavior that is optional. To avoid ambiguity, the opposite of

“may” is expressed as “need not”, instead of “may not”.

Obsolescent Certain features are obsolescent, which means that they may be considered for

withdrawal in future versions of this standard. They are retained because of their

widespread use, but their use is discouraged.

Shall Describes a feature or behavior that is a requirement. To avoid ambiguity, do not

use “must” as an alternative to “shall”.

Shall not Describes a feature or behavior that is an absolute prohibition.

Should Describes a feature or behavior that is recommended but not required.

Will Same meaning as “shall”; “shall” is the preferred term.

1.6 Future Directions

None.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 3

2 Definitions

For the purposes of this standard, the following terms and definitions apply. The TOGAF
®

framework [4] should be referenced for Enterprise Architecture-related terms not defined in this

chapter. Merriam-Webster’s Collegiate Dictionary (11
th
 Edition) should be referenced for all

other terms not defined in this chapter.

Any conflict between definitions described here and the TOGAF framework is unintentional. If

the definition of a term is specific to the ArchiMate modeling language, and a general definition

is defined by the TOGAF framework, then this is noted in the definition.

2.1 ArchiMate Core Framework

A reference structure used to classify elements of the ArchiMate core language. It consists of

three layers and three aspects.

Note: The ArchiMate Core Framework is defined in detail in Section 3.4.

2.2 ArchiMate Core Language

The central part of the ArchiMate language that defines the concepts to model Enterprise

Architectures. It includes concepts from three layers: Business, Application, and Technology

(including Physical).

2.3 Architecture View

A representation of a system from the perspective of a related set of concerns.

Note: In some sections of this standard, the term “view” is used as a synonym for

“architecture view”.

2.4 Architecture Viewpoint

A specification of the conventions for a particular kind of architecture view.

Note: In some sections of this standard, the term “viewpoint” is used as a synonym for

“architecture viewpoint”.

2.5 Aspect

Classification of elements based on layer-independent characteristics related to the concerns of

different stakeholders. Used for positioning elements in the ArchiMate metamodel. See also

Section 2.9.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

4 The Open Group Standard (2019)

Note: Aspects are described in Section 3.4.

2.6 Attribute

A property associated with an ArchiMate language element or relationship.

2.7 Composite Element

An element consisting of other elements from multiple aspects or layers of the language.

2.8 Concept

Either an element, a relationship, or a relationship connector. See also Section 2.12 and Section

2.14.

Note: The top-level language structure is defined in detail in Section 3.2.

2.9 Conformance

Fulfillment of specified requirements.

2.10 Conforming Implementation

An implementation which satisfies the conformance requirements defined by the conformance

clause of this standard. See Section 1.3.

2.11 Core Element

A structure or behavior element in one of the core layers of the ArchiMate language.

Note: Core elements are described in detail in Section 3.4.

2.12 Element

Basic unit in the ArchiMate metamodel. Used to define and describe the constituent parts of

Enterprise Architectures and their unique set of characteristics.

2.13 Layer

An abstraction of the ArchiMate framework at which an enterprise can be modeled.

2.14 Model

A collection of concepts in the context of the ArchiMate language structure.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 5

Note: The top-level language structure is defined in detail in Section 3.2.

For a general definition of model, see the TOGAF framework [4].

2.15 Relationship

A connection between a source and target concept. Classified as structural, dependency,

dynamic, or other.

Note: Relationships are defined in detail in Chapter 5.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

6 The Open Group Standard (2019)

3 Language Structure

This chapter describes the structure of the ArchiMate Enterprise Architecture modeling

language. The detailed definition and examples of its standard set of elements and relationships

follow in Chapter 4 to Chapter 13.

3.1 Language Design Considerations

A key challenge in the development of a general metamodel for Enterprise Architecture is to

strike a balance between the specificity of languages for individual architecture domains and a

very general set of architecture concepts, which reflects a view of systems as a mere set of inter-

related entities.

The design of the ArchiMate language started from a set of relatively generic concepts. These

have been specialized towards application at different architectural layers, as explained in the

following sections. The most important design restriction on the language is that it has been

explicitly designed to be as small as possible, but still usable for most Enterprise Architecture

modeling tasks. Many other languages try to accommodate the needs of all possible users. In the

interest of simplicity of learning and use, the ArchiMate language has been limited to the

concepts that suffice for modeling the proverbial 80% of practical cases.

This standard does not describe the detailed rationale behind the design of the ArchiMate

language. The interested reader is referred to [1], [2], and [3], which provide a detailed

description of the language construction and design considerations.

3.2 Top-Level Language Structure

Figure 1 outlines the top-level hierarchical structure of the language:

 A model is a collection of concepts – a concept is either an element or a relationship

 An element is either a behavior element, a structure element, a motivation element, or a

composite element

Note that these are abstract concepts; they are not intended to be used directly in models. To

signify this, they are depicted in white with labels in italics.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 7

Figure 1: Top-Level Hierarchy of ArchiMate Concepts

3.3 Layering of the ArchiMate Language

The ArchiMate core language defines a structure of generic elements and their relationships,

which can be specialized in different layers. Three layers are defined within the ArchiMate core

language as follows:

1. The Business Layer depicts business services offered to customers, which are realized in

the organization by business processes performed by business actors.

2. The Application Layer depicts application services that support the business, and the

applications that realize them.

3. The Technology Layer depicts technology services such as processing, storage, and

communication services needed to run the applications, and the computer and

communication hardware and system software that realize those services. Physical

elements are included for modeling physical equipment, materials, and distribution

networks to this layer.

The general structure of models within the different layers is similar. The same types of elements

and relationships are used, although their exact nature and granularity differ. In the next chapter,

the structure of the generic metamodel is presented. In Chapter 8, Chapter 9, and Chapter 10,

these elements are specialized to obtain elements specific to a particular layer.

In alignment with service-orientation, the most important relationship between layers is formed

by “serving”
1
 relationships, which show how the elements in one layer are served by the services

of other layers. (Note, however, that services need not only serve elements in another layer, but

also can serve elements in the same layer.) A second type of link is formed by realization

1 Note that this was called “used by” in previous versions of the standard. For the sake of clarity, this name has been changed to

“serving”.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

8 The Open Group Standard (2019)

relationships: elements in lower layers may realize comparable elements in higher layers; e.g., a

“data object” (Application Layer) may realize a “business object” (Business Layer); or an

“artifact” (Technology Layer) may realize either a “data object” or an “application component”

(Application Layer).

3.4 The ArchiMate Core Framework

The ArchiMate Core Framework is a framework of nine cells used to classify elements of the

ArchiMate core language. It is made up of three aspects and three layers, as illustrated in Figure

2. This is known as the ArchiMate Core Framework.

It is important to understand that the classification of elements based on aspects and layers is

only a global one. Real-life architecture elements need not strictly be confined to one aspect or

layer, because elements that link the different aspects and layers play a central role in a coherent

architectural description. For example, running somewhat ahead of the later conceptual

discussions, business roles serve as intermediary elements between “purely behavioral” elements

and “purely structural” elements, and it may depend on the context whether a certain piece of

software is considered to be part of the Application Layer or the Technology Layer.

Figure 2: ArchiMate Core Framework

The structure of the framework allows for modeling of the enterprise from different viewpoints,

where the position within the cells highlights the concerns of the stakeholder. A stakeholder

typically can have concerns that cover multiple cells.

The dimensions of the framework are as follows:

 Layers – the three levels at which an enterprise can be modeled in ArchiMate – Business,

Application, and Technology (as described in Section 3.3)

 Aspects:

— The Active Structure Aspect, which represents the structural elements (the business

actors, application components, and devices that display actual behavior; i.e., the

“subjects” of activity)

Technology

Physical

Application

Business

Passive

Structure

Behavior Active

Structure

Aspects

Layers

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 9

— The Behavior Aspect, which represents the behavior (processes, functions, events, and

services) performed by the actors; structural elements are assigned to behavioral

elements, to show who or what displays the behavior

— The Passive Structure Aspect, which represents the objects on which behavior is

performed; these are usually information objects in the Business Layer and data objects

in the Application Layer, but they may also be used to represent physical objects

A composite element, as shown in Figure 1, is an element that does not necessarily fit in a single

aspect (column) of the framework, but may combine two or more aspects.

Note that the ArchiMate language does not require the modeler to use any particular layout such

as the structure of this framework; it is merely a categorization of the language elements.

3.5 The ArchiMate Full Framework

The ArchiMate Full Framework, as described in this version of the standard, adds a number of

layers and an aspect to the Core Framework. The physical elements are included in the

Technology Layer for modeling physical facilities and equipment, distribution networks, and

materials. As such, these are also core elements. They are described in Chapter 11. The strategy

elements are introduced to model strategic direction and choices. They are described in Chapter

7. The motivation aspect is introduced at a generic level in the next chapter and described in

detail in Chapter 6. The implementation and migration elements are described in Chapter 13.

The resulting ArchiMate Full Framework is shown in Figure 3.

Figure 3: ArchiMate Full Framework

The ArchiMate language does not define a specific layer for information; however, elements

from the passive structure aspect such as business objects, data objects, and technology objects

are used to represent information entities. Information modeling is supported across the different

ArchiMate layers.

Technology

Strategy

Implementation

& Migration

Physical

Application

Business

MotivationPassive

Structure

Behavior Active

Structure

Aspects

Layers

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

10 The Open Group Standard (2019)

3.6 Abstraction in the ArchiMate Language

The structure of the ArchiMate language accommodates several familiar forms of abstraction

and refinement. First of all, the distinction between an external (black-box, abstracting from the

contents of the box) and internal (white-box) view is common in systems design. The external

view depicts what the system has to do for its environment, while the internal view depicts how

it does this.

Second, the distinction between behavior and active structure is commonly used to separate what

the system must do and how the system does it from the system constituents (people,

applications, and infrastructure) that do it. In modeling new systems, it is often useful to start

with the behaviors that the system must perform, while in modeling existing systems, it is often

useful to start with the people, applications, and infrastructure that comprise the system, and then

analyze in detail the behaviors performed by these active structures.

A third distinction is between conceptual, logical, and physical abstraction levels. This has its

roots in data modeling: conceptual elements represent the information the business finds

relevant; logical elements provide logical structure to this information for manipulation by

information systems; physical elements describe the storage of this information; for example, in

the form of files or database tables. In the ArchiMate language, this corresponds with business

objects, data objects, and artifacts, and the realization relationships between them.

The distinction between logical and physical elements has also been carried over to the

description of applications. The TOGAF Content Metamodel [4] describes logical and physical

data, application, and technology components. Logical components are implementation or

product-independent encapsulations of data or functionality, whereas physical components are

tangible software components, devices, etc. The distinction within the TOGAF framework

between Architecture Building Blocks (ABBs) and Solution Building Blocks (SBBs) is very

similar. This distinction is again useful in progressing Enterprise Architectures from high-level,

abstract descriptions to tangible, implementation-level designs. Note that building blocks may

contain multiple elements, which are typically modeled using the grouping concept in the

ArchiMate language.

The ArchiMate language has three ways of modeling such abstractions. First, as described in [6],

behavior elements such as application and technology functions can be used to model logical

components, since they represent implementation-independent encapsulations of functionality.

The corresponding physical components can then be modeled using active structure elements

such as application components and nodes, assigned to the behavior elements. Second, the

ArchiMate language supports the concept of realization. This can best be described by working

with the Technology Layer upwards. The Technology Layer defines the physical artifacts and

software that realize an application component. It also provides a mapping to other physical

concepts such as devices, networks, etc. needed for the realization of an information system. The

realization relationship is also used to model more abstract kinds of realization, such as that

between a (more specific) requirement and a (more generic) principle, where fulfillment of the

requirement implies adherence to the principle. Realization is also allowed between application

components and between nodes. This way you can model a physical application or technology

component realizing a logical application or technology component, respectively. Third, logical

and physical application components can be defined as specializations of the application

component element, as described in Chapter 15 (see also the examples in Section 15.2.2). The

same holds for the logical and physical technology components of the TOGAF Content

Metamodel, which can be defined as specializations of the node element (see Section 15.2.3).

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 11

The ArchiMate language intentionally does not support a difference between types and

instances. At the Enterprise Architecture abstraction level, it is more common to model types

and/or exemplars rather than instances. Similarly, a business process in the ArchiMate language

does not describe an individual instance (i.e., one execution of that process). In most cases, a

business object is therefore used to model an object type (cf. a UML
®
 class), of which several

instances may exist within the organization. For instance, each execution of an insurance

application process may result in a specific instance of the insurance policy business object, but

that is not modeled in the Enterprise Architecture.

3.7 Concepts and their Notation

The ArchiMate language separates the language concepts (i.e., the constituents of the

metamodel) from their notation. Different stakeholder groups may require different notations in

order to understand an architecture model or view. In this respect, the ArchiMate language

differs from languages such as UML or BPMN™, which have only one standardized notation.

The viewpoint mechanism explained in Chapter 14 provides the means for defining such

stakeholder-oriented visualizations.

Although the notation of the ArchiMate concepts can (and should) be stakeholder-specific, the

standard provides one common graphical notation which can be used by architects and others

who develop ArchiMate models. This notation is targeted towards an audience used to existing

technical modeling techniques such as Entity Relationship Diagrams (ERDs), UML, or BPMN,

and therefore resembles them. In the remainder of this document, unless otherwise noted, the

symbols used to depict the language concepts represent the ArchiMate standard notation. This

standard notation for most elements consists of a box with an icon in the upper-right corner. In

several cases, this icon by itself may also be used as an alternative notation. This standard

iconography should be preferred whenever possible so that anyone knowing the ArchiMate

language can read the diagrams produced in the language.

3.8 Use of Nesting

Nesting elements inside other elements can be used as an alternative graphical notation to

express some relationships. This is explained in more detail in Section 5.1 and in the definition

of each of these relationships.

3.9 Use of Colors and Notational Cues

In the metamodel pictures within this standard, shades of grey are used to distinguish elements

belonging to the different aspects of the ArchiMate framework, as follows:

 White for abstract (i.e., non-instantiable) concepts

 Light grey for passive structures

 Medium grey for behavior

 Dark grey for active structures

In ArchiMate models, there are no formal semantics assigned to colors and the use of color is

left to the modeler. However, they can be used freely to stress certain aspects in models. For

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

12 The Open Group Standard (2019)

instance, in many of the example models presented in this standard, colors are used to

distinguish between the layers of the ArchiMate Core Framework, as follows:

 Yellow for the Business Layer

 Blue for the Application Layer

 Green for the Technology Layer

They can also be used for visual emphasis. A recommended text providing guidelines is Chapter

6 of [1].

In addition to the colors, other notational cues can be used to distinguish between the layers of

the framework. A letter M, S, B, A, T, P, or I in the top-left corner of an element can be used to

denote a Motivation, Strategy, Business, Application, Technology, Physical, or Implementation

& Migration element, respectively. An example of this notation is depicted in Example 34.

The standard notation also uses a convention with the shape of the corners of its symbols for

different element types, as follows:

 Square corners are used to denote structure elements

 Round corners are used to denote behavior elements

 Diagonal corners are used to denote motivation elements

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 13

4 Generic Metamodel

4.1 Behavior and Structure Elements

The main hierarchy of behavior and structure elements of the ArchiMate language is presented

in the metamodel fragment of Figure 4. It defines these elements in a generic, layer-independent

way. Note that most of these elements (the white boxes) are abstract metamodel elements; i.e.,

these are not instantiated in models but only serve to structure the metamodel. The notation

presented in this chapter is therefore the generic way in which the specializations of these

elements (i.e., the elements of the different architecture layers) are depicted.

Figure 4: Hierarchy of Behavior and Structure Elements

This generic metamodel fragment consists of two main types of elements: structure (“nouns”)

and behavior elements (“verbs”).

Structure elements can be subdivided into active structure elements and passive structure

elements. Active structure elements can be further subdivided into external active structure

elements (also called interfaces) and internal active structure elements.

Behavior elements can be subdivided into internal behavior elements, external behavior

elements (also called services), and events.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

14 The Open Group Standard (2019)

These three aspects – active structure, behavior, and passive structure – have been inspired by

natural language, where a sentence has a subject (active structure), a verb (behavior), and an

object (passive structure).

Figure 5 specifies the main relationships between the behavior and structure elements defined

above. For an explanation of the different types of relationships see Chapter 5. In this and other

metamodel figures, the label of a relationship signifies the role of the source element in the

relationship; e.g., a service serves an internal behavior element.

Figure 5: Behavior and Structure Elements Metamodel

Note: This figure does not show all permitted relationships; every element in the language

can have composition, aggregation, and specialization relationships to elements of the

same type. Furthermore, there are indirect relationships that can be derived, as

explained in Section 5.7. The full specification of permitted relationships can be found

in Appendix B.

Note: This figure is to be read as a generic template for the layers of the ArchiMate core (see

Section 3.4), but is not applied directly. Each layer defines its own specialized version

of this.

4.1.1 Active Structure Elements

Active structure elements are the subjects that can perform behavior. These can be subdivided

into internal active structure elements; i.e., the business actors, application components, nodes,

etc., that realize this behavior, and external active structure elements; i.e., the interfaces that

expose this behavior to the environment. An interface provides an external view on the service

provider and hides its internal structure.

An internal active structure element represents an entity that is capable of performing behavior.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 15

Active structure elements are denoted using boxes with square corners and an icon in the upper-

right corner, or by the icon on its own.

Figure 6: Generic Internal Active Structure Element Notation

An external active structure element, called an interface, represents a point of access where one

or more services are provided to the environment.

Figure 7: Generic External Active Structure Elements (Interface) Notation

4.1.2 Behavior Elements

Behavior elements represent the dynamic aspects of the enterprise. Similar to active structure

elements, behavior elements can be subdivided into internal behavior elements and external

behavior elements; i.e., the services that are exposed to the environment.

An internal behavior element represents a unit of activity that can be performed by one or more

active structure elements.

Behavior elements are denoted in the standard iconography using boxes with round corners and

an icon in the upper-right corner, or by the icon on its own.

Figure 8: Generic Internal Behavior Element Notation

An external behavior element, called a service, represents an explicitly defined exposed

behavior.

Figure 9: Generic External Behavior Element (Service) Notation

Thus, a service is the externally visible behavior of the providing system, from the perspective of

systems that use that service; the environment consists of everything outside this providing

system. The value offered to the user of the service provides the motivation for the existence of

the service. For the users, only this exposed behavior and value, together with non-functional

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

16 The Open Group Standard (2019)

aspects such as the quality of service, costs, etc., are relevant. These can be specified in a

contract or Service-Level Agreement (SLA). Services are accessible through interfaces.

In addition to this, a third type of behavior element is defined to denote an event that can occur;

for example, to signal a state change.

An event represents a state change.

An event may have a time attribute that indicates the moment or moments at which the event

happens. For example, this can be used to model time schedules.

Figure 10: Generic Event Notation

4.1.3 Passive Structure Elements

Passive structure elements can be accessed by behavior elements.

A passive structure element represents an element on which behavior is performed.

A passive structure element is a structural element that cannot perform behavior. Active

structure elements can perform behavior on passive structure elements. Passive structure

elements are often information or data objects, but they can also represent physical objects.

Figure 11: Generic Passive Structure Element Notation

4.2 Specializations of Structure and Behavior Elements

The specializations of core elements are summarized in Figure 12. Within each layer, it is

permitted to use composition and aggregation relationships between processes, functions, and

interactions; e.g., a process can be composed of other processes, functions, and/or interactions.

Figure 12: Specializations of Core Elements

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 17

For individual internal behavior elements, a distinction is made between processes and functions.

A process represents a sequence of behaviors that achieves a specific result.

Figure 13: Generic Process Notation

A function represents a collection of behavior based on specific criteria, such as required

resources, competencies, or location.

Figure 14: Generic Function Notation

The collective nature of a behavior can be made either implicit (several active structure elements

assigned to the same internal behavior via an and junction) or explicit through the use of a

collective internal behavior (interaction) that is performed by (a collaboration of) multiple active

structure elements.

A collaboration represents an aggregate of two or more internal active structure elements,

working together to perform some collective behavior.

Figure 15: Generic Collaboration Notation

This collective internal behavior can be modeled as an interaction.

An interaction represents a unit of collective behavior that must be performed by two or more

internal active structure elements, either assigned directly or aggregated in a collaboration.

Figure 16: Generic Interaction Notation

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

18 The Open Group Standard (2019)

4.3 Summary of Structure and Behavior Elements

Table 1 gives an overview of the core elements, their definitions, and their default graphical

notation. But note that most of these elements are abstract; they are not used in models but only

their descendants in the different layers of the ArchiMate language.

Table 1: Core Elements

Element Specializations Definition Notation

Active Structure

Internal active structure

element

Represents an entity that is capable of

performing behavior.

 Collaboration Represents an aggregate of two or more

internal active structure elements,

working together to perform some

collective behavior.

Interface (external active

structure element)

Represents a point of access where one

or more services are exposed to the

environment.

Behavior

Internal behavior element Represents a unit of activity that can be

performed by one or more active

structure elements.

 Process Represents a sequence of behaviors that

achieves a specific result.

 Function Represents a collection of behavior

based on specific criteria, such as

required resources, competencies, or

location.

 Interaction Represents a unit of collective behavior

that must be performed by two or more

internal active structure elements, either

assigned directly or aggregated in a

collaboration.

Service (external behavior

element)

Represents an explicitly defined exposed

behavior.

Event Represents a state change.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 19

Element Specializations Definition Notation

Passive Structure

Passive structure element Represents an element on which

behavior is performed.

4.4 Motivation Elements

The core elements of the ArchiMate language focus on describing the architecture of systems

that support the enterprise. They do not cover the elements which, in different ways, drive the

design and operation of the enterprise. These motivation aspects correspond to the “Why”

column of the Zachman framework [5].

Several motivation elements are included in the language: stakeholder, value, meaning, driver,

assessment, goal, outcome, principle, and requirement, which in turn has constraint as a subtype.

In this section, the generic motivation element is introduced. The more specific motivation

elements are described in Chapter 6.

The motivation elements address the way the Enterprise Architecture is aligned to its context, as

described by these intentions.

A motivation element represents the context of or reason behind the architecture of an enterprise.

Figure 17: Generic Motivation Element Notation

Motivation elements are usually denoted using boxes with diagonal corners.

Table 2: Motivation Element

Element Definition Notation

Motivation

element

Represents the context of or reason behind

the architecture of an enterprise.

4.5 Composite Elements

Composite elements consist of other concepts, possibly from multiple aspects or layers of the

language. Grouping and location are generic composite elements (see Figure 18). Composite

elements can themselves aggregate or compose other composite elements.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

20 The Open Group Standard (2019)

Figure 18: Composite Elements

4.5.1 Grouping

The grouping element aggregates or composes concepts that belong together based on some

common characteristic.

The grouping element is used to aggregate or compose an arbitrary group of concepts, which can

be elements and/or relationships of the same or of different types. An aggregation or

composition relationship is used to link the grouping element to the grouped concepts. Grouping

elements can also have other relationships to and from them, as shown in Appendix B.

Figure 19: Grouping Notation

Concepts may be aggregated by multiple (overlapping) groups.

One useful way of employing grouping is for modeling Architecture and Solution Building

Blocks (ABBs and SBBs), as described in the TOGAF framework [4].

Another useful application of grouping is for modeling domains. For example, the TOGAF

framework [4] Glossary of Supplementary Definition defines Information Domain as: “grouping

of information (or data entities) by a set of criteria such as security classification, ownership,

location, etc. In the context of security, Information Domains are defined as a set of users, their

information objects, and a security policy”.

Note: The use of grouping is not to be confused with creating views on the architecture

(Section 14.3). Although like a view it comprises concepts that belong together for

some reason, it does not provide a separate visualization of these concepts. Moreover,

groupings are used within architecture views to provide additional structure to an

architecture model and its visualization.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 21

Example

In Example 1, the “Grouping” element is used to aggregate a conglomerate of two processes and

an object that together realize a service (both with nesting and explicitly drawn aggregation

relationships).

Example 1: Grouping

Note: Grouping does not work with derivation of relationships (Section 5.7). However, its

semantics do imply that a relationship from or to a group should be interpreted as a

collective relationship with the group’s contents. In the example, the implied meaning

is that the contents of the group together, or parts thereof, realize the service. However,

this is not always easily expressed in simple derivable relationships.

4.5.2 Location

A location represents a conceptual or physical place or position where concepts are located (e.g.,

structure elements) or performed (e.g., behavior elements).

The location element is used to model the places where (active and passive) structure elements

such as business actors, application components, and devices are located. This is modeled by

means of an aggregation relationship from a location to structure element. A location can also

aggregate a behavior element, to indicate where the behavior is performed. This element

corresponds to the “Where” column of the Zachman framework [5].

Figure 20: Location Notation

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

22 The Open Group Standard (2019)

5 Relationships

In addition to the generic elements outlined in Chapter 4, the ArchiMate language defines a core

set of generic relationships, each of which can connect a predefined set of source and target

concepts (in most cases elements, but in a few cases also other relationships). Many of these

relationships are “overloaded”; i.e., their exact meaning differs depending on the source and

destination concepts that they connect.

The relationships are classified as follows (see Figure 21):

 Structural relationships, which model the static construction or composition of concepts

of the same or different types

 Dependency relationships, which model how elements are used to support other elements

 Dynamic relationships, which are used to model behavioral dependencies between

elements

 Other relationships, which do not fall into one of the above categories

Figure 21: Overview of Relationships

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 23

Each relationship has exactly one “from” and one “to” concept (element, relationship, or

relationship connector) as endpoints. The following restrictions apply:

 No relationships are allowed between two relationships

 All relationships connected with relationship connectors must be of the same type

 A chain of relationships of the same type that connects two elements, and is in turn

connected via relationship connectors, is valid only if a direct relationship of that same

type between those two elements is valid

 A relationship connecting an element with a second relationship can only be an

aggregation, composition, or association; aggregation or composition are valid only from

a composite element to that second relationship

It is good practice to explicitly name or label any relationship that would else be ambiguous or

otherwise misunderstood.

For the sake of readability, the metamodel figures throughout this document do not show all

possible relationships in the language. Section 5.7 describes a set of derivation rules to derive

indirect relationships between elements in a model. Aggregation, composition, and

specialization relationships are always permitted between two elements of the same type, and

association is always allowed between any two elements, and between any element and

relationship. The exact specification of permitted relationships is given in Appendix B.

5.1 Structural Relationships

Structural relationships represent the “static” coherence within an architecture. The uniting

(composing, aggregating, assigned, or realizing) concept (the “from” side of the relationship) is

always an element; for assignment and realization it can be an element or a relationships

connector. The united (being composed, aggregated, assigned to, or realized) concept (the “to”

side of the relationship) may in some cases also be another relationship or relationship

connector.

As an alternative to the graphical notations proposed in this section, structural relationships may

also be expressed by nesting the united concept within the uniting element. Note, however, that

this can lead to ambiguous views (although unambiguous in the model), in case multiple

structural relationships are allowed between these elements.

5.1.1 Composition Relationship

The composition relationship represents that an element consists of one or more other concepts.

The composition relationship has been inspired by the composition relationship in UML class

diagrams. Composition is a whole/part relationship that expresses an existence dependency: if a

composite is deleted, its parts are (normally) deleted as well. When you model real-world

elements – for example, an organization structure of departments and teams expressed as

business actors – this dependency applies to these elements themselves. When you model

exemplars or categories – as is common in Enterprise Architecture – this dependency may be

interpreted as applying to their real-world instances. For example, a specific kind of server can

be modeled as a node composed of a device and system software; this implies an existence

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

24 The Open Group Standard (2019)

dependency between individual servers of that kind and the individual devices and system

software instances of which they consist.

A composition relationship is always allowed between two instances of the same element type.

In addition to this, the metamodel explicitly defines other source and target elements that may be

connected by a composition relationship.

Figure 22: Composition Notation

The interpretation of a composition relationship is that the whole or part of the source element is

composed of the whole of the target element. See also Section 5.1.5.

Example

Example 2 shows the two ways to express that the “Financial Processing” business function is

composed of three sub-functions.

Example 2: Composition

5.1.2 Aggregation Relationship

The aggregation relationship represents that an element combines one or more other concepts.

The aggregation relationship has been inspired by the aggregation relationship in UML class

diagrams. Unlike composition, aggregation does not imply an existence dependency between the

aggregating and aggregated concepts.

An aggregation relationship is always allowed between two instances of the same element type.

In addition to this, the metamodel explicitly defines other source and target elements that may be

connected by an aggregation relationship.

Figure 23: Aggregation Notation

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 25

The interpretation of an aggregation relationship is that the whole or part of the source element

aggregates the whole of the target concept. See also Section 5.1.5.

Example

Example 3 shows two ways to express that the “Customer File” aggregates an “Insurance

Policy” and “Insurance Claim”.

Example 3: Aggregation

5.1.3 Assignment Relationship

The assignment relationship represents the allocation of responsibility, performance of behavior,

storage, or execution.

The assignment relationship links active structure elements with units of behavior that are

performed by them, business actors with business roles that are fulfilled by them, and nodes with

technology objects. It can, for example, relate an internal active structure element with an

internal behavior element, an interface with a service, or a node, device, and system software

with an artifact. The full set of permitted relationships is listed in Appendix B.

Figure 24: Assignment Notation

In the ArchiMate framework described in Section 3.4, it always points from active structure to

behavior, from behavior to passive structure, and from active to passive structure. The non-

directional notation from the ArchiMate 2.1 Specification and before, which shows the black

ball at both ends of the relationship, is still allowed but deprecated.

As with all structural relationships, an assignment relationship can also be expressed by nesting

the model elements. The direction mentioned above is also the direction of nesting; for example,

a business role inside the business actor performing that role, an application function inside an

application component executing that function, or an artifact inside a node that stores it.

The interpretation of an assignment relationship is that the whole or part of the source element is

assigned the whole of the target element (see also Section 5.1.5). This means that if, for example,

two active structure elements are assigned to the same behavior element, either of them can

perform the complete behavior. If both active structure elements are needed to perform the

behavior, the grouping element or a junction (see Section 5.5) can be used, and if the

combination of these elements has a more substantive and independent character, a collaboration

would be the right way to express this.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

26 The Open Group Standard (2019)

Example

Example 4 includes the two ways to express the assignment relationship. The “Finance”

application component is assigned to the “Transaction Processing” application function, and the

“Payment Interface” is assigned to the “Payment Service”.

Example 4: Assignment

5.1.4 Realization Relationship

The realization relationship represents that an entity plays a critical role in the creation,

achievement, sustenance, or operation of a more abstract entity.

The realization relationship indicates that more abstract entities (“what” or “logical”) are

realized by means of more tangible entities (“how” or “physical”). The realization relationship is

used to model run-time realization; for example, that a business process realizes a business

service, and that a data object realizes a business object, an artifact realizes an application

component, or a core element realizes a motivation element.

Figure 25: Realization Notation

The interpretation of a realization relationship is that the whole or part of the source element

realizes the whole of the target element (see also Section 5.1.5). This means that if, for example,

two internal behavior elements have a realization relationship to the same service, either of them

can realize the complete service. If both internal behavior elements are needed to realize, the

grouping element or an and junction (see Section 5.5.1) can be used. For weaker types of

positive, neutral, or negative contribution to the realization of a motivation element, the

influence relationship (see Section 5.2.3) should be used.

Example

Example 5 illustrates two ways to use the realization relationship. A “Transaction Processing”

business function realizes a “Billing Service”; the “Billing Data” business object is realized by

the representation “Paper Invoice”.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 27

Example 5: Realization

5.1.5 Semantics of Structural Relationships

Structural relationships describe that the element on the source side contains, groups, performs,

or realizes the concept on the target side of the relationship. Structural relationships can be

transitively applied to (possibly unmodeled) parts of the source element. Below are some

examples of how these semantics work:

 Composition and aggregation relationships from parts also apply to the whole

For example, if a part of A aggregates B, A itself is also considered to aggregate B.

Conversely, if A aggregates B, that can be interpreted as some part of A aggregating B.

 Assignment relationships to behavior elements also apply to the active structure elements

For example, if business role A is assigned to business process B, some part of A may

perform B. Conversely, if a part of A is assigned to B, A itself is also considered to be

assigned to B.

 Realization relationships to external behavior elements also apply to the internal behavior

elements

For example, if a service B is realized by a process A, B may be realized by some part of

A. Conversely, if a part of A realizes B, A itself is also considered to realize B.

Example

In the left-hand side of Example 6, the entire business actor B (possibly a department) is

composed in business actor A (possibly a division), via some unmodeled element inside A. In

the example on the right, business process A completely realizes business service B, via some

unmodeled element inside A.

Example 6: Semantics of Structural Relationships

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

28 The Open Group Standard (2019)

5.2 Dependency Relationships

Dependency relationships describe how elements support or are used by other elements. Four

types of dependency relationship are distinguished:

 The serving relationship represents a control dependency, denoted by a solid line

 The access relationship represents a data dependency, denoted by a dotted line

 The influence relationship represents an impact dependency, denoted by a dashed line

 The association relationship represents a dependency not covered by any of the other

relationships

Note that, although the notation of these relationships resembles the notation of the dependency

relationship in UML, these relationships have distinct meanings in ArchiMate notation and

(usually) point in the opposite direction. One advantage of this is that it yields models with

directionality, where most of the arrows that represent such supporting, influencing, serving, or

realizing dependencies point “upwards” towards the client/user/business, as you can see in the

layered viewpoint example in Section C.1.5. Another reason for this direction, in particular for

the serving relationship, is that it abstracts from the “caller” or “initiator”, since a service may be

delivered proactively or reactively. The direction of delivery is always the same, but the starting

point for the interaction can be on either end. UML’s dependency is often used to denote the

latter, showing that the caller depends on some operation that is called. However, for modeling

this type of initiative, the ArchiMate language provides the triggering relationship (Section

5.3.1), which can be interpreted as a dynamic (i.e., temporal) dependency. Similarly, the flow

relationship is used to model how something (usually information) is transferred from one

element to another, which is also a dynamic kind of dependency.

5.2.1 Serving Relationship

The serving relationship represents that an element provides its functionality to another element.

The serving relationship describes how the services or interfaces offered by a behavior or active

structure element serve entities in their environment. This relationship is applied for both the

behavior aspect and the active structure aspect.

Compared to the earlier versions of this standard, the name of this relationship has been changed

from “used by” to “serving”, to better reflect its direction with an active verb: a service serves a

user. The meaning of the relationship has not been altered. The “used by” designation is still

allowed but deprecated, and will be removed in a future version of the standard.

Figure 26: Serving Notation

Example

Example 7 illustrates the serving relationship. The “Payment Interface” serves the “Customer”,

while the “Payment Service” serves the “Pay Invoices” business process of that customer.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 29

Example 7: Serving

5.2.2 Access Relationship

The access relationship represents the ability of behavior and active structure elements to

observe or act upon passive structure elements.

The access relationship indicates that a process, function, interaction, service, or event “does

something” with a passive structure element; e.g., create a new object, read data from the object,

write or modify the object data, or delete the object. The relationship can also be used to indicate

that the object is just associated with the behavior; e.g., it models the information that comes

with an event, or the information that is made available as part of a service. The arrow head, if

present, indicates the creation, change, or usage of passive structure elements. The access

relationship should not be confused with the UML dependency relationship, which uses a similar

notation.

Note that, at the metamodel level, the direction of the relationship is always from an active

structure element or a behavior element to a passive structure element, although the notation

may point in the other direction to denote “read” access, and in both directions to denote read-

write access. Care must be taken when using access with derived relationships because the arrow

on the relationship has no bearing to its directionality.

Figure 27: Access Notation

Alternatively, an access relationship can be expressed by nesting the passive structure element

inside the behavior or active structure element that accesses it; for example, nesting a data object

inside an application component.

Example

Example 8 illustrates the access relationship. The “Create Invoice” sub-process writes/creates

the “Invoice” business object; the “Send Invoice” sub-process reads that object.

Example 8: Access

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

30 The Open Group Standard (2019)

5.2.3 Influence Relationship

The influence relationship represents that an element affects the implementation or achievement

of some motivation element.

The influence relationship is used to describe that some architectural element influences

achievement or implementation of a motivation element, such as a goal or a principle. In general,

a motivation element is realized to a certain degree. For example, consistently satisfying the

principle “serve customers wherever they are” will help to make the goal “increase market

share” come true. In other words, the principle contributes to the goal. In turn, to implement the

principle “serve customers wherever they are”, it may be useful to impose a requirement of

“24x7 web availability” on some customer-facing application component. This can be modeled

as a requirement that has an influence on that principle, and as an application component that in

turn influences the requirement. Consistently modeling these dependencies with an influence

relationship yields a traceable motivational path that explains why, in this example, a certain

application component contributes to the corporate goal to “increase market share”. This kind of

traceability supports measuring the results of Enterprise Architecture, and provides valuable

information to, for example, change impact assessments.

Additional to this “vertical” use of contribution, from core elements upwards to requirements

and goals, the relationship can also be used to model “horizontal” contributions between

motivation elements. The influence relationship in that case describes that some motivation

element may influence (the achievement or implementation of) another motivation element. In

general, a motivation element is achieved to a certain degree. An influence by some other

element may affect this degree, depending on the degree in which this other element is satisfied

itself. For example, the degree in which the goal to increase customer satisfaction is realized

may be represented by the percentage of satisfied customers that participate in a market

interview. This percentage may be influenced by, for example, the goal to improve the

reputation of the company; i.e., a higher degree of improvement results in a higher increase in

customer satisfaction. On the other hand, the goal to lay off employees may influence the

company reputation negatively; i.e., more lay-offs could result in a lower increase (or even

decrease) in the company reputation. And thus (indirectly), the goal to increase customer

satisfaction may also be influenced negatively.

The realization relationship should be used to represent relationships that are critical to the

existence or realization of the target, while the influence relationship should be used to represent

relationships that are not critical to the target object’s existence or realization. For example, a

business actor representing a construction crew might realize the goal of constructing a building,

and a requirement to add additional skilled construction workers to an already adequate crew

might influence the goal of constructing the building, but also realize an additional goal of

opening the building by a particular date. Moreover, an influence relationship can be used to

model either:

 The fact that an element positively contributes to the achievement or implementation of

some motivation element, or

 The fact that an element negatively influences – i.e., prevents or counteracts – such

achievement

Attributes can be used to indicate the sign and/or strength of the influence. The choice of

possible attribute values is left to the modeler; e.g., {++, +, 0, -, --} or [0..10]. By default, the

influence relationship models a contribution with unspecified sign and strength.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 31

Figure 28: Influence Notation

Example

Example 9 illustrates the use of the influence relationship to model the different effects of the

same requirement, “Assign Personal Assistant”. This has a strongly positive influence on

“Reduce Workload Of Employees”, but a strongly negative influence on “Decrease Costs”.

Example 9: Influence

5.2.4 Association Relationship

An association relationship represents an unspecified relationship, or one that is not represented

by another ArchiMate relationship.

An association relationship is always allowed between two elements, or between a relationship

and an element.

The association relationship can be used when drawing a first high-level model where

relationships are initially denoted in a generic way, and later refined to show more specific

relationship types. In the metamodel pictures, some specific uses of the association relationship

are explicitly shown. An association is undirected by default but may be directed. See also

Section 5.2.5.

Figure 29: Association Notation

Example

Example 10 illustrates two directed association relationships between a contract and two

business objects to which this contract refers. It also shows an association between a flow

relationship and this contract, to indicate the kind of information that is communicated between

the two functions.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

32 The Open Group Standard (2019)

Example 10: Association

5.2.5 Semantics of Dependency Relationships

Dependency relationships describe that a part of the target element has a dependency on a part of

the source element. Although there is a dependency between the two elements, it does not

necessarily mean this applies to all of the parts of the element as defined by any structural

relationships.

This semantic allows you to model dependencies at a high level (with details removed) without

implying specific dependencies at a more detailed level. This means, for example, that:

 In serving relationships, some part of an internal behavior element is served by some part

of an external behavior element; for example, if a business service A serves a business

process B, some unmodeled sub-service of A may serve an unmodeled sub-process of B

 In access relationships, some part of a behavior element accesses some part of a passive

structure element; for example, if an application function A accesses a data object B, some

unmodeled sub-function of A may access an unmodeled part of B

 In influence relationships, some part of a core element influences some part of a

motivational element; for example, if an application component A influences a

requirement B, some unmodeled part of A may influence some unmodeled part of B

 In association relationships, some part of an element is related to some part of another

element; if it is directed, it can only be used in derivations in that direction (see Section

5.7)

Example

In the left-hand side of Example 11, a part of business process B is served by a part of

application service A. In the right-hand example, a part of business process B accesses (reads) a

part of business object A.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 33

Example 11: Semantics of Dependency Relationships

5.3 Dynamic Relationships

The dynamic relationships describe temporal dependencies between elements within the

architecture. Two types of dynamic relationships are distinguished: triggering and flow.

5.3.1 Triggering Relationship

The triggering relationship represents a temporal or causal relationship between elements.

The triggering relationship is used to model the temporal or causal precedence of behavior

elements in a process. The interpretation of a triggering relationship is that some part of the

source element should be completed before the target element can start (see also Section 5.3.3).

Note that this does not necessarily represent that one behavior element actively starts another; a

traffic light turning green also triggers the cars to go through the intersection.

Figure 30: Triggering Notation

Example

Example 12 illustrates that triggering relationships are used to model causal dependencies

between (sub-)processes and/or events.

Example 12: Triggering

5.3.2 Flow Relationship

The flow relationship represents transfer from one element to another.

The flow relationship is used to model the flow of, for example, information, goods, or money

between behavior elements. A flow relationship does not imply a causal relationship.

Figure 31: Flow Notation

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

34 The Open Group Standard (2019)

Example

Example 13 shows a “Claim Assessment” business function, which forwards decisions about the

claims to the “Claim Settlement” business function. In order to determine the order in which the

claims should be assessed, “Claim Assessment” makes use of schedule information received

from the “Scheduling” business function.

Example 13: Flow

5.3.3 Semantics of Dynamic Relationships

The semantics of triggering and flow relationships differ. The triggering relationship follows the

same semantics as structural relationships (Section 5.1.5). A triggering relationship from A to B

indicates that everything in B is preceded by a part of A. When A and B are business processes,

for example, it means that all steps in business process B are performed after a part of A has

occurred, but steps in A can occur after some or all steps in B have occurred. A stronger

interpretation of triggering (everything in B is preceded by everything in A) could be imposed

on the ArchiMate model by a modeling group wishing to do so.

The flow relationships follow the same semantics as dependency relationships (see Section

5.2.5). A flow relationship from A to B indicates that the whole or some part of A transfers

something (e.g., information) to the whole or some part of B.

5.4 Other Relationships

5.4.1 Specialization Relationship

The specialization relationship represents that an element is a particular kind of another element.

The specialization relationship has been inspired by the generalization relationship in UML class

diagrams but is applicable to specialize a wider range of concepts.

A specialization relationship is always allowed between two instances of the same element type.

Figure 32: Specialization Notation

Alternatively, a specialization relationship can be expressed by nesting the specialized element

inside the generic element.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 35

Example

Example 14 illustrates the use of the specialization relationship for a process. In this case, the

“Take Out Travel Insurance” and “Take Out Luggage Insurance” business processes are a

specialization of a more generic “Take Out Insurance” business process.

Example 14: Specialization

5.4.2 Semantics of Other Relationships

The semantics of the specialization relationship are that the whole of the generic element is

specialized by the specialized element.

5.5 Relationship Connectors

5.5.1 Junction

A junction is not an actual relationship in the same sense as the other relationships described in

this chapter, but rather a relationship connector.

A junction is used to connect relationships of the same type.

A junction is used in a number of situations to connect relationships of the same type. A path

with junctions that connect relationships of this type is only allowed between two concepts, if a

direct relationship of that type between these concepts is also permitted. Simply put, you cannot

use junctions to create relationships between concepts that would otherwise not be allowed.

A junction may have multiple incoming relationships and one outgoing relationship, one

incoming relationship and multiple outgoing relationships, or multiple incoming and outgoing

relationships (the latter can be considered a shorthand of two contiguous junctions).

The relationships that can be used in combination with a junction are all the dynamic and

dependency relationships, as well as assignment and realization. A junction is used to explicitly

express that all elements together must participate in the relationship (and junction) or that at

least one of the elements participates in the relationship (or junction). The or junction can be

used to express both inclusive and exclusive or conditions, which could be indicated by a

modeler by naming the junction to reflect its type. It is allowed to omit arrowheads of

relationships leading into a junction.

Figure 33: Junction Notation

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

36 The Open Group Standard (2019)

Junctions used on triggering relationships are similar to gateways in BPMN and forks and joins

in UML activity diagrams (without the associated semantics). They can be used to model high-

level process flow. A label may be added to outgoing triggering relationships of a junction to

indicate a choice, condition, or guard that applies to that relationship. Such a label is only an

informal indication. No formal, operational semantics have been defined for these relationships,

because implementation-level languages such as BPMN and UML differ in their execution

semantics and the ArchiMate language does not want to unduly constrain mappings to such

languages.

Examples

In Example 15, the and junction in the model is used to denote that the “Sales” and “Finance”

business functions together realize the “Invoicing” business service.

Example 15: (And) Junction

In Example 16, the or junction is used to denote a choice: business process “Assess Request”

triggers either “Accept Request” or “Reject Request”. (The usual interpretation of two separate

triggering relations, one from “Assess Request” to “Accept Request” and one from “Assess

Request” to “Reject Request”, is that “Assess Request” triggers both of the other business

processes.)

Example 16: Or Junction

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 37

5.6 Summary of Relationships

Table 3 gives an overview of the ArchiMate relationships with their definitions.

Table 3: Relationships

Structural Relationships Notation Role Names

Composition Represents that an element consists of one or

more other concepts.

 composed of

 composed in

Aggregation Represents that an element combines one or more

other concepts.
 aggregates

 aggregated in

Assignment Represents the allocation of responsibility,

performance of behavior, storage, or execution.
 assigned to

 has assigned

Realization Represents that an entity plays a critical role in the

creation, achievement, sustenance, or operation of

a more abstract entity.

 realizes

 realized by

Dependency Relationships Notation Role Names

Serving Represents that an element provides its

functionality to another element.

 serves

 served by

Access Represents the ability of behavior and active

structure elements to observe or act upon passive

structure elements.

 accesses

 accessed by

Influence Represents that an element affects the

implementation or achievement of some

motivation element.

 influences

 influenced by

Association Represents an unspecified relationship, or one that

is not represented by another ArchiMate

relationship.

associated with

 associated to

 associated from

Dynamic Relationships Notation Role Names

Triggering Represents a temporal or causal relationship

between elements.
 triggers

 triggered by

Flow Represents transfer from one element to another.

 flows to

 flows from

Other Relationships Notation Role Names

Specialization Represents that an element is a particular kind of

another element.
 specializes

 specialized by

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

38 The Open Group Standard (2019)

Relationship Connectors Notation Role Names

Junction Used to connect relationships of the same type.

5.7 Derivation of Relationships

In the ArchiMate language, you can derive indirect relationships between elements in a model,

based on the modeled relationships. This makes it possible to abstract from intermediary

elements that are not relevant to show in a certain model or view of the architecture and supports

impact analysis. The precise rules for making such derivations are specified in Appendix B.

Example

In Example 17, assume that the goal is to abstract from the application functions, sub-functions,

and services in the model. In this case, an indirect serving relationship (thick red arrow on the

right) can be derived from “Financial Application” to the “Invoicing and Collections” business

process (from the chain assignment – composition – realization – serving).

Example 17: Derivation from a Chain of Relationships

Derivation of relationships is intended as a way to create summaries of detailed models. It is a

way to remove (to abstract from) details in a model, while still making valid “statements”.

Hence, derivation is always meant to go from more detail to less detail. This mechanism is one

of the unique properties of the ArchiMate language compared to other modeling languages.

The language allows the modeler directly to create relationships that are necessarily valid

derived relationships without the constituents of the derivation being available in the model

These relationships (for example, a realization relationship between an application component

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 39

and an application service) assume that the required constituents (for example, an application

function) needed for the derived relationship exist; however, these missing elements need not be

modeled explicitly, and the derived relationships can be used as if they have not been derived.

Thus, the modeler has full freedom in choosing the required level of detail.

Because the essence of derivation is to make simplifications or summaries, it cannot be used to

infer more detail. For example, a realization relationship from an application component to an

application service can be modeled, but from it no conclusions can be drawn about the exact

source of this derivation (e.g., which functions realize which services).

This is information that should be added by a modeler during the design process: a higher-level,

more abstract model can be refined by elaborating the derived relationships (in the previous

example by adding an application function that realizes the application service and to which the

application component is assigned).

It is important to note that all these derived relationships are also valid in the ArchiMate

language. They are not shown in the metamodel diagrams included in the standard because this

would reduce their legibility. However, the tables in Appendix B show all permitted

relationships between two elements in the language.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

40 The Open Group Standard (2019)

6 Motivation Elements

Motivation elements are used to model the motivations, or reasons, that guide the design or

change of an Enterprise Architecture.

6.1 Motivation Elements Metamodel

Figure 34 gives an overview of the motivation elements and their relationships.

Figure 34: Motivation Elements Metamodel

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 41

Note: This figure does not show all permitted relationships; every element in the language

can have composition, aggregation, and specialization relationships with elements of

the same type. Furthermore, there are indirect relationships that can be derived, as

explained in Section 5.7. The full specification of permitted relationships can be found

in Appendix B.

6.2 Stakeholder, Driver, and Assessment

It is essential to understand the factors, often referred to as drivers, which influence other

motivation elements. They can originate from either inside or outside the enterprise. A

stakeholder can be an individual or a group of people, such as a project team, enterprise, or

society. Drivers that are associated with a stakeholder are often called “concerns” of that

stakeholder. Examples of such drivers are customer satisfaction, compliance to legislation, or

profitability. It is common for enterprises to undertake an assessment of these drivers; e.g., using

a Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis, in order to respond in the

best way.

6.2.1 Stakeholder

A stakeholder represents the role of an individual, team, or organization (or classes thereof) that

represents their interests in the effects of the architecture.

This definition is based on the definition in the TOGAF framework [4]. A stakeholder has one or

more interests in, or concerns about, the organization and its Enterprise Architecture. In order to

direct efforts to these interests and concerns, stakeholders change, set, and emphasize goals.

Stakeholders may also influence each other. Examples of stakeholders are the Chief Executive

Officer (CEO), the board of directors, shareholders, customers, business and application

architects, but also legislative authorities. The name of a stakeholder should preferably be a

noun.

Figure 35: Stakeholder Notation

6.2.2 Driver

A driver represents an external or internal condition that motivates an organization to define its

goals and implement the changes necessary to achieve them.

Drivers that are associated with a stakeholder are often called “concerns” of that stakeholder.

Stakeholder concerns are defined in the TOGAF framework [4] as “an interest in a system

relevant to one or more of its stakeholders. Concerns may pertain to any aspect of the system’s

functioning, development, or operation, including considerations such as performance,

reliability, security, distribution, and evolvability and may determine the acceptability of the

system.” Examples of internal drivers are customer satisfaction and profitability. Drivers of

change may also be external to the enterprise (e.g., economic changes or changing legislation)

and need not have a stakeholder associated with them. The name of a driver should preferably be

a noun.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

42 The Open Group Standard (2019)

Figure 36: Driver Notation

6.2.3 Assessment

An assessment represents the result of an analysis of the state of affairs of the enterprise with

respect to some driver.

An assessment may reveal strengths, weaknesses, opportunities, or threats for some area of

interest. These need to be addressed by adjusting existing goals or setting new ones, which may

trigger changes to the Enterprise Architecture.

Strengths and weaknesses are internal to the organization. Opportunities and threats are external

to the organization. Weaknesses and threats can be considered as problems that need to be

addressed by goals that “negate” the weaknesses and threats. Strengths and opportunities may be

translated directly into goals. For example, the weakness “Customers complain about the

helpdesk” can be addressed by defining the goal “Improve helpdesk”. Or, the opportunity

“Customers favor insurances that can be managed online” can be addressed by the goal

“Introduce online portfolio management”. The name of an assessment should preferably be a

noun or a (very) short sentence.

Figure 37: Assessment Notation

6.2.4 Example

The stakeholder “Chief Marketing Officer (CMO)” is concerned with the driver “Market Share”,

the stakeholder “Chief Executive Officer (CEO)” is concerned with the drivers “Market Share”

and “Profitability”, and the stakeholder “Chief Financial Officer (CFO)” is concerned with the

driver “Profitability”. The driver “Profitability” is composed of two other drivers: “Revenue”

and “Costs”. Several assessments are associated with these drivers (e.g., the assessment “Market

Share Is Declining” is associated with driver “Market Share”), and assessments may influence

each other in a positive or negative way (e.g., “Market Share Is Declining” results in “Revenue

Is Declining”, which in turn results in “Profitability Is Declining”).

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 43

Example 18: Stakeholder, Driver, and Assessment

6.3 Goal, Outcome, Principle, Requirement, and Constraint

The motivation of an organization or individual to achieve certain results is represented by goals,

principles, requirements, and constraints. Goals represent that a stakeholder wants to realize a

certain outcome; e.g., “Increase customer satisfaction by 10%”. The end results realized by

capabilities that realize these goals are outcomes. Principles and requirements represent desired

properties of solutions – or means – to realize the goals. Principles are normative guidelines that

guide the design of all possible solutions in a given context. For example, the principle “Data

should be stored only once” represents a means to achieve the goal of “Data consistency” and

applies to all possible designs of the organization’s architecture. Requirements represent formal

statements of need, expressed by stakeholders, which must be met by the architecture or

solutions. For example, the requirement “Use a single CRM system” conforms to the

aforementioned principle by applying it to the current organization’s architecture in the context

of the management of customer data.

6.3.1 Goal

A goal represents a high-level statement of intent, direction, or desired end state for an

organization and its stakeholders.

In principle, a goal can represent anything a stakeholder may desire, such as a state of affairs, or

a produced value. Examples of goals are: to increase profit, to reduce waiting times at the

helpdesk, or to introduce online portfolio management. Goals are typically used to measure

success of an organization.

Goals are generally expressed using qualitative words; e.g., “increase”, “improve”, or “easier”.

Goals can also be decomposed; e.g., “increase profit” can be decomposed into the goals “reduce

cost” and “increase sales”. However, it is also very common to associate concrete outcomes with

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

44 The Open Group Standard (2019)

goals, which can be used to describe both the quantitative and time-related results that are

essential to describe the desired state, and when it should be achieved.

Figure 38: Goal Notation

6.3.2 Outcome

An outcome represents an end result.

Outcomes are high-level, business-oriented results produced by capabilities of an organization,

and by inference by the core elements of its architecture that realize these capabilities. Outcomes

are tangible, possibly quantitative, and time-related, and can be associated with assessments. An

outcome may have a different value for different stakeholders.

The notion of outcome is important in business outcome-driven approaches to Enterprise

Architecture and in capability-based planning. Outcomes are closely related to requirements,

goals, and other intentions. Outcomes are the end results, and goals or requirements are often

formulated in terms of outcomes that should be realized. Capabilities are designed to achieve

such outcomes.

When modeling a future state, an outcome models an end result that is expected to have been

achieved at that future point in time. Unlike goals, outcomes can also be used to model

potentially unwanted end results; for example, in order to design appropriate mitigating

measures.

Outcome names should unambiguously identify end results that have been achieved or are

expected to be achieved at a definite point in the future. Examples include “First-place customer

satisfaction ranking achieved” and “Key supplier partnerships in place”. Outcome names can

also be more specific; e.g., “10% year-over-year quarterly profits increase in 2018”.

Figure 39: Outcome Notation

6.3.3 Principle

A principle represents a statement of intent defining a general property that applies to any

system in a certain context in the architecture.

The term “system” is used in its general meaning; i.e., as a group of (functionally) related

elements, where each element may be considered as a system again. Therefore, a system may

refer to any active structural element, behavior element, or passive structural element of some

organization, such as a business actor, application component, business process, application

service, business object, or data object.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 45

Principles are strongly related to goals and requirements. Similar to requirements, principles

define intended properties of systems. However, in contrast to requirements, principles are

broader in scope and more abstract than requirements. A principle defines a general property that

applies to any system in a certain context, whereas a requirement defines a property that applies

to a specific system as described by an architecture. For example, the principle “Information

management processes comply with all relevant laws, policies, and regulations” is realized by

the requirements that are imposed by the actual laws, policies, and regulations that apply to the

specific system under design.

Figure 40: Principle Notation

6.3.4 Requirement

A requirement represents a statement of need defining a property that applies to a specific

system as described by the architecture.

In the end, a business goal must be realized by a plan or concrete change goal, which may or

may not require a new system or changes to an existing system.

Requirements model the properties of these elements that are needed to achieve the “ends” that

are modeled by the goals. In this respect, requirements represent the “means” to realize goals.

During the design process, goals may be decomposed until the resulting sub-goals are

sufficiently detailed to enable their realization by properties that can be exhibited by systems. At

this point, goals can be realized by requirements that demand these properties from the systems.

For example, two alternative requirements may be identified to realize the goal “Improve

portfolio management”:

 By assigning a personal assistant to each customer, or

 By introducing online portfolio management

The former requirement can be realized by a human actor and the latter by a software

application. These requirements can be decomposed further to define the requirements on the

human actor and the software application in more detail.

Figure 41: Requirement Notation

6.3.5 Constraint

A constraint represents a factor that limits the realization of goals.

In contrast to a requirement, a constraint does not prescribe some intended functionality of the

system to be realized but imposes a restriction on the way it operates or may be realized. This

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

46 The Open Group Standard (2019)

may be a restriction on the implementation of the system (e.g., specific technology that is to be

used), a restriction on the implementation process (e.g., time or budget constraints), or a

restriction on the functioning of the system (e.g., legal constraints).

Figure 42: Constraint Notation

6.3.6 Example

The goal “Improve Profitability of Service Offering” is realized by the outcome “Increased

Profit by 10% in Next Fiscal Year”. This outcome is influenced positively by the outcomes

“Increased Revenue by 20% in Next Fiscal Year” and “Reduced Cost of Customer Acquisition

by 25%”. The outcome “Increased Revenue by 20% in Next Fiscal Year” is influenced

positively by an outcome “Increased Market Share by 10% in Next Fiscal Year”. There is also a

negative outcome: “Increased Technology Expenditure by 10%”. These outcomes are realized

by a combination of two principles: “Serve Customers Wherever They Are” and “Serve

Customers Whenever They Need Our Help”. Both of these principles are realized by a

combination of two requirements: “Mobile Applications Shall Run On All Popular Mobile

Platforms” and “Services Shall Be Accessible Through Mobile Browsers”. The goal “Reduced

Cost Of Customer Acquisition by 25%” is realized by a principle “Respond To Changing

Customer Needs, Preferences, And Expectations Quickly And Efficiently”, which in turn is

realized by a constraint “Mobile Applications Shall Be Built With Cross-Platform Frameworks”.

Example 19: Goal, Outcome, Principle, Requirement, and Constraint

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 47

6.4 Meaning and Value

Different stakeholders may attach a different value to outcomes, since they may have different

interests. Similarly, they may give their own meaning or interpretation to core elements of the

architecture.

6.4.1 Meaning

Meaning represents the knowledge or expertise present in, or the interpretation given to, a

concept in a particular context.

A meaning represents the interpretation of a concept of the architecture. In particular, this is used

to describe the meaning of passive structure elements (for example, a document, message). It is a

description that expresses the intent of that element; i.e., how it informs the external user.

It is possible that different users view the informative functionality of an element differently. For

example, what may be a “registration confirmation” for a client could be a “client mutation” for

a CRM department (assuming for the sake of argument that it is modeled as an external user).

Also, various different representations may carry essentially the same meaning. For example,

various different documents (a web document, a filled-in paper form, a “client contact” report

from the call center) may essentially carry the same meaning.

A meaning can be associated with any concept. To denote that a meaning is specific to a

particular stakeholder, this stakeholder can also be associated to the meaning. The name of a

meaning should preferably be a noun or noun phrase.

Figure 43: Meaning Notation

6.4.2 Value

Value represents the relative worth, utility, or importance of a concept.

Value may apply to what a party gets by selling or making available some product or service, or

it may apply to what a party gets by buying or obtaining access to it. Value is often expressed in

terms of money, but it has long since been recognized that non-monetary value is also essential

to business; for example, practical/functional value (including the right to use a service), and the

value of information or knowledge. Though value can hold internally for some system or

organizational unit, it is most typically applied to external appreciation of goods, services,

information, knowledge, or money, normally as part of some sort of customer-provider

relationship.

A value can be associated with any concept. To model the stakeholder for whom this value

applies, this stakeholder can also be associated with that value. Although the name of a value can

be expressed in many different ways (including amounts, objects), where the “functional” value

of an architecture element is concerned it is recommended to try and express it as an action or

state that can be performed or reached as a result of the corresponding element being available.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

48 The Open Group Standard (2019)

Figure 44: Value Notation

6.4.3 Example

Sending push notifications has a value of “Cost Efficiency” for the stakeholder “Insurer”, and a

value of “Being Informed” and “Peace of Mind” (which is partly due to a value of “Certainty”)

for the stakeholder “Customer”. Different meanings can be assigned to the different specific

types of notification messages. A “Confirmation Of Receipt Message” has the meaning “Claim

Has Been Received”, a “Review Complete Message” has the meaning “Claim Review

Complete”, and a “Payment Complete Message” has the meaning “Claim Has Been Paid”.

Example 20: Meaning and Value

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 49

6.5 Summary of Motivation Elements

Table 4 gives an overview of the motivation elements, with their definitions.

Table 4: Motivation Elements

Element Definition Notation

Stakeholder Represents the role of an individual, team,

or organization (or classes thereof) that

represents their interests in the effects of

the architecture.

Driver Represents an external or internal condition

that motivates an organization to define its

goals and implement the changes necessary

to achieve them.

Assessment Represents the result of an analysis of the

state of affairs of the enterprise with respect

to some driver.

Goal Represents a high-level statement of intent,

direction, or desired end state for an

organization and its stakeholders.

Outcome Represents an end result.

Principle Represents a statement of intent defining a

general property that applies to any system

in a certain context in the architecture.

Requirement Represents a statement of need defining a

property that applies to a specific system as

described by the architecture.

Constraint Represents a factor that limits the

realization of goals.

Meaning Represents the knowledge or expertise

present in, or the interpretation given to, a

concept in a particular context.

Value Represents the relative worth, utility, or

importance of a concept.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

50 The Open Group Standard (2019)

6.6 Relationships with Core Elements

The purpose of the motivation elements is to model the motivation behind the core elements in

an Enterprise Architecture. Therefore, it should be possible to relate motivation elements to core

elements.

As shown in Figure 45, a requirement (and, indirectly, also a principle, outcome, and goal) can

be related directly to a structure or behavior element by means of a realization relationship. Also,

the weaker influence relationship is allowed between these elements. Meaning and value can be

associated with any structure or behavior element.

Figure 45: Relationships Between Motivation Elements and Core Elements

Also, a business internal active structure element (i.e., business actor, role, or collaboration) may

be assigned to a stakeholder to express that someone with an operational position within the

enterprise is also a stakeholder of that enterprise.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 51

7 Strategy Elements

The strategy elements are typically used to model the strategic direction and choices of an

enterprise, as far is the impact on its architecture is concerned. They can be used to express how

the enterprise wants to create value for its stakeholders, the capabilities it needs for that, the

resources needed to support these capabilities, and how it plans to configure and use these

capabilities and resources to achieve its aims (see Chapter 6). Strategy elements are used to

model the strategic direction and choices of the enterprise, whereas Business Layer elements

(Chapter 8) are used to model the operational organization of an enterprise.

7.1 Strategy Elements Metamodel

Figure 46 gives an overview of the strategy elements and their relationships.

Figure 46: Strategy Elements Metamodel

Note: This figure does not show all permitted relationships; every element in the language

can have composition, aggregation, and specialization relationships with elements of

the same type. Furthermore, there are indirect relationships that can be derived, as

explained in Section 5.7. The full specification of permitted relationships can be found

in Appendix B.

7.2 Structure Elements

7.2.1 Resource

A resource represents an asset owned or controlled by an individual or organization.

Resources are a central concept in the field of strategic management, economics, computer

science, portfolio management, and more. They are often considered, together with capabilities,

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

52 The Open Group Standard (2019)

to be sources of competitive advantage for organizations. Resources are analyzed in terms of

strengths and weaknesses, and they are considered when implementing strategies. Due to

resources being limited, they can often be a deciding factor for choosing which strategy, goal,

and project to implement and in which order. Resources can be classified in different ways;

including tangible assets, intangible assets, and human assets. Examples of tangible assets

include financial assets (cash, securities, borrowing capacity, etc.) and physical assets (plant,

equipment, land, mineral reserves, etc.). Examples of intangible assets include technology assets

(patents, copyrights, trade secrets, etc.), reputation assets (brand, relationships, etc.), and culture

assets. Examples of human assets include skills/know-how, capacity for communication and

collaboration, and motivation.

Resources are realized by active and passive structure elements and are therefore classified as

structures that are neither active nor passive. The name of a resource should preferably be a

noun.

Figure 47: Resource Notation

7.3 Behavior Elements

7.3.1 Capability

A capability represents an ability that an active structure element, such as an organization,

person, or system, possesses.

In the field of business, strategic thinking and planning delivers strategies and high-level goals

that are often not directly implementable in the architecture of an organization. These long-term

or generic plans need to be specified and made actionable in a way that both business leaders

and Enterprise Architects can relate to, and at a relatively high abstraction level.

Capabilities help to reduce this gap by focusing on business outcomes. On the one hand, they

provide a high-level view of the current and desired abilities of an organization, in relation to its

strategy and its environment. On the other hand, they are realized by various elements (people,

processes, systems, and so on) that can be described, designed, and implemented using

Enterprise Architecture approaches. Capabilities may also have serving relationships; for

example, to denote that one capability contributes to another.

Capabilities are expressed in general and high-level terms and are typically realized by a

combination of organization, people, processes, information, and technology. For example,

marketing, customer contact, or outbound telemarketing [4].

Capabilities are typically aimed at achieving some goal or delivering value by realizing an

outcome. Capabilities are themselves realized by core elements. To denote that a set of core

elements together realizes a capability, grouping can be used.

Capabilities are often used for capability-based planning, to describe their evolution over time.

To model such so-called capability increments, the specialization relationship can be used to

denote that a certain capability increment is a specific version of that capability. Aggregating

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 53

those increments and the core elements that realize them in plateaus (see Section 13.2.4) can be

used to model the evolution of the capabilities.

The name of a capability should emphasize “what we do” rather than “how we do it”. Typically

it should be expressed as a compound noun or gerund (-ing form of verb); e.g., “Project

Management”, “Market Development”, “Product Engineering”, etc.

Figure 48: Capability Notation

7.3.2 Value Stream

A value stream represents a sequence of activities that create an overall result for a customer,

stakeholder, or end user.

A value stream describes how an enterprise organizes its activities to create value. As described

in the TOGAF Series Guide: Value Streams [17], a key principle of value streams is that value is

always defined from the perspective of the stakeholder – the customer, end user, or recipient of

the product, service, or deliverable produced by the work. The value obtained is in the eye of the

beholder; it depends more on the stakeholder’s perception of the worth of the product, service,

outcome, or deliverable than on its intrinsic value; i.e., the cost to produce. This is modeled in

the ArchiMate language using the value element. This, in turn, is associated on the one hand

with the result being produced, and on the other hand may be associated with the stakeholder.

Value streams may be defined at different levels of the organization; e.g., at the enterprise level,

business unit level, or department level. Value streams can be a composition or aggregation of

value-adding activities. These are also modeled with the value stream element and are known as

value (stream) stages, each of which creates and adds incremental value from one stage to the

next. These stages are typically related using flow relationships to model the flow of value

between them. Resources can be assigned to value streams and capabilities can serve (i.e.,

enable) a value stream.

Importantly, value streams and business processes may seem alike, but they are defined at

different abstraction levels and serve separate purposes. A business process describes the (time-

ordered) sequence of behaviors required to create some result for an individual case, and it may

describe alternative paths and decision points (modeled with junctions). In contrast, a value

stream focuses on the overall value-creating behavior from the perspective of the importance,

worth, or usefulness of what is produced, and is not a description of time-ordered tasks for

individual cases. Value streams (and capabilities) reflect an organization’s business model and

value proposition, whereas business processes (and business functions) reflect its operating

model. At their respective abstraction levels, value streams and business processes both

represent the “enterprise in motion”, whereas capabilities and business functions both describe

the “enterprise at rest”.

Value streams are typically realized by business processes and possibly other core behavior

elements. The stages in a value stream provide a framework for organizing and defining business

processes, but different parts of the organization may have their own implementations of

business processes that realize the same value stream stage. Conversely, one business process

may realize multiple stages in a value stream.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

54 The Open Group Standard (2019)

It is recommended that the name of a value stream be expressed using a verb-noun construct in

the active tense; e.g., “Acquire Insurance Product”.

Figure 49: Value Stream Notation

7.3.3 Course of Action

A course of action represents an approach or plan for configuring some capabilities and

resources of the enterprise, undertaken to achieve a goal.

A course of action represents what an enterprise has decided to do. Courses of action can be

categorized as strategies and tactics. It is not possible to make a hard distinction between the

two, but strategies tend to be long-term and fairly broad in scope, while tactics tend to be

shorter-term and narrower in scope.

Figure 50: Course of Action Notation

7.4 Example

“Increase Profit” is a goal that can be decomposed into a number of other goals: “Decrease

Costs” and “Increase Revenue”. The former is related to the “Operational Excellence” strategy

of the company, modeled as a course of action. This is decomposed into two other courses of

action: “Centralize IT Systems” and “Standardize Products”. These result in two outcomes:

“Decreased Costs” and “Loss of Customers”, which influence the goals in positive and negative

ways. This shows an important difference between goals and outcomes: not all outcomes lead to

the intended results.

The courses of action are realized by a number of capabilities: “IT Management & Operations”

and “Product Management”, and appropriate resources “Human Resources” and “IT Resources”

are assigned to the former. The model fragment also shows that these resources are located in the

“Headquarters” of the organization, in line with the “Centralize IT Systems” course of action.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 55

Example 21: Capability, Resource, and Course of Action

Example 22 shows a model of a high-level value stream for an insurance company, where each

stage in the value stream is served by a number of capabilities. Between these stages, we see the

value flows with associated value items, and at the end the business outcome that this value

stream realizes for a particular stakeholder.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

56 The Open Group Standard (2019)

Example 22: Value Stream with Capability Cross-Mapping

7.5 Summary of Strategy Elements

Table 5 gives an overview of the strategy elements, with their definitions.

Table 5: Strategy Elements

Element Description Notation

Resource Represents an asset owned or controlled by an

individual or organization.

Capability Represents an ability that an active structure

element, such as an organization, person, or

system, possesses.

Value stream Represents a sequence of activities that create an

overall result for a customer, stakeholder, or end

user.

Course of action Represents an approach or plan for configuring

some capabilities and resources of the enterprise,

undertaken to achieve a goal.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 57

7.6 Relationships with Motivation and Core Elements

Figure 51 shows how the strategy elements are related to core elements and motivation elements.

Internal and external behavior elements may realize strategy behavior elements (value streams

and capabilities), while an active or passive structure element may realize a resource.

Capabilities, value streams, courses of action, and resources may realize or influence

requirements (and indirectly, as described in Section 5.7, also principles or goals), and a course

of action may also realize or influence an outcome (and, indirectly, also a goal).

Figure 51: Relationships Between Strategy Elements and Motivation and Core Elements

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

58 The Open Group Standard (2019)

8 Business Layer

Business Layer elements are used to model the operational organization of an enterprise in a

technology-independent manner, whereas strategy elements (Chapter 7) are used to model the

strategic direction and choices of the enterprise.

8.1 Business Layer Metamodel

Figure 52 gives an overview of the Business Layer elements and their relationships. “Business

Internal Active Structure Element”, “Business Internal Behavior Element”, and “Business

Passive Structure Element” are abstract elements; only their specializations (as defined in the

following sections) are instantiated in models.

Figure 52: Business Layer Metamodel

Note: This figure does not show all permitted relationships; every element in the language

can have composition, aggregation, and specialization relationships with elements of

the same type. Furthermore, there are indirect relationships that can be derived, as

explained in Section 5.7.

8.2 Active Structure Elements

The active structure aspect of the Business Layer refers to the static structure of an organization,

in terms of the entities that make up the organization and their relationships. The active entities

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 59

are the subjects (e.g., business actors or business roles) that perform behavior such as business

processes or functions (capabilities). Business actors may be individual persons (e.g., customers

or employees), but also groups of people (organization units) and resources that have a

permanent (or at least long-term) status within the organizations. Typical examples of the latter

are a department and a business unit.

Architectural descriptions focus on structure, which means that the inter-relationships of entities

within an organization play an important role. To make this explicit, the element of business

collaboration has been introduced.

The element of business interface is introduced to explicitly model the (logical or physical)

places or channels where the services that a role offers to the environment can be accessed. The

same service may be offered on a number of different interfaces; e.g., by mail, by telephone, or

through the Internet. In contrast to application modeling, it is uncommon in current Business

Layer modeling approaches to recognize the business interface element.

In the Business Layer, three types of internal active structure element are defined: business

actor, business role, and business collaboration.

Figure 53: Business Internal Active Structure Elements

Note: This figure does not show all permitted relationships; every element in the language

can have composition, aggregation, and specialization relationships with elements of

the same type. Furthermore, there are indirect relationships that can be derived, as

explained in Section 5.7. The full specification of permitted relationships can be found

in Appendix B.

8.2.1 Business Actor

A business actor represents a business entity that is capable of performing behavior.

A business actor is a business entity as opposed to a technical entity; i.e., it belongs to the

Business Layer. Actors may, however, include entities outside the actual organization; e.g.,

customers and partners. A business actor can represent such business entities at different levels

of detail and may correspond to both an actor and an organizational unit in the TOGAF

framework [4]. Examples of business actors are humans, departments, and business units.

A business actor may be assigned to one or more business roles. It can then perform the behavior

to which these business roles are assigned. A business actor can be aggregated in a location. The

name of a business actor should preferably be a noun. Business actors may be specific

individuals or organizations; e.g., “John Smith” or “ABC Corporation”, or they may be generic;

e.g., “customer” or “supplier”.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

60 The Open Group Standard (2019)

Figure 54: Business Actor Notation

8.2.2 Business Role

A business role represents the responsibility for performing specific behavior, to which an actor

can be assigned, or the part an actor plays in a particular action or event.

Business roles with certain responsibilities or skills are assigned to business processes or

business functions. A business actor that is assigned to a business role is responsible for ensuring

that the corresponding behavior is carried out, either by performing it or by delegating and

managing its performance. In addition to the relation of a business role with behavior, a business

role is also useful in a (structural) organizational sense; for instance, in the division of labor

within an organization.

A business role may be assigned to one or more business processes or business functions, while

a business actor may be assigned to one or more business roles. A business interface or an

application interface may serve a business role, while a business interface may be part of a

business role. The name of a business role should preferably be a noun.

Figure 55: Business Role Notation

ArchiMate modelers may represent generic organizational entities that perform behavior as

either business actors or business roles. For example, the business actor “Supplier” depicts an

organizational entity, while the business role “Supplier” depicts a responsibility. Specific or

generic business actors can be assigned to carry responsibilities depicted as business roles. For

example, the specific business actor “ABC Corporation” or the generic business actor “Business

Partner” can be assigned to the “Supplier” business role.

8.2.3 Business Collaboration

A business collaboration represents an aggregate of two or more business internal active

structure elements that work together to perform collective behavior.

A business process or function may be interpreted as the internal behavior of a single business

role. In some cases, behavior is the collective effort of more than one business role; in fact, a

collaboration of two or more business roles results in collective behavior which may be more

than simply the sum of the behavior of the separate roles. Business collaborations represent this

collective effort. Business interactions can be used to describe the internal behavior that takes

place within business collaboration. A business collaboration is a (possibly temporary) collection

of business roles, actors, or other collaborations within an organization which perform

collaborative behavior (interactions). Unlike a department, a business collaboration need not

have an official (permanent) status within the organization; it is specifically aimed at a specific

interaction or set of interactions between roles. It is especially useful in modeling Business-to-

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 61

Business (B2B) interactions between different organizations such as provider networks, and also

for describing social networks.

A business collaboration may aggregate a number of business roles, actors, or other

collaborations and may be assigned to one or more business interactions or other business

internal behavior elements. A business interface or an application interface may serve a business

collaboration, while a business collaboration may have business interfaces (through composition,

and also through aggregation via derived relationships). The name of a business collaboration

should preferably be a noun. It is also rather common to leave a business collaboration unnamed.

Figure 56: Business Collaboration Notation

8.2.4 Business Interface

A business interface represents a point of access where a business service is made available to

the environment.

A business interface exposes the functionality of a business service to other business roles or

actors. It is often referred to as a channel (telephone, Internet, local office, etc.). The same

business service may be exposed through different interfaces.

A business interface may be part of a business role or actor through a composition relationship,

and a business interface may serve a business role. A business interface may be assigned to one

or more business services, which means that these services are exposed by the interface. The

name of a business interface should preferably be a noun.

Figure 57: Business Interface Notation

8.2.5 Example

The “ArchiSurance Contact Center”, modeled as a business actor, is composed of three

employees, also modeled as business actors: “Greg”, “Joan”, and “Larry”. The “ArchiSurance

Contact Center” has three business interfaces to serve customers: “Phone”, “E-mail”, and “Web

Chat”. Greg fulfills the business role of “Travel Insurance Claim Analyst”, Joan fulfills the

business role of “Home Insurance Product Specialist”, and Larry fulfills the business role of

“Customer Service Representative”. The former two business roles are specializations of a

business role “Specialist”. “High-Risk Claims Adjudication” is a business collaboration of two

business roles: “Specialist” and “Customer Service Representative”.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

62 The Open Group Standard (2019)

Example 23: Business Active Structure Elements

8.3 Behavior Elements

Based on service-orientation, a crucial design decision for the behavioral part of the ArchiMate

metamodel is the distinction between “external” and “internal” behavior of an organization.

The externally visible behavior is modeled by the element business service. A business service

represents a coherent piece of functionality that offers added value to the environment,

independent of the way this functionality is realized internally. A distinction can be made

between “external” business services, offered to external customers, and “internal” business

services, offering supporting functionality to processes or functions within the organization.

Several types of internal behavior elements that can realize a service are distinguished. Although

the distinction between the two is not always sharp, it is often useful to distinguish a process

view and a function view on behavior; two elements associated with these views, business

process and business function, are defined. Both elements can be used to group more detailed

business processes/functions but based on different grouping criteria. A business process

represents a workflow consisting of smaller processes/functions, with one or more clear starting

points and leading to some result. It is sometimes described as “customer to customer”, where

this customer may also be an internal customer, in the case of sub-processes within an

organization. The goal of such a business process is to “satisfy or delight the customer” [10]. A

business function offers functionality that may be useful for one or more business processes. It

groups behavior based on, for example, required skills, resources, (application) support, etc.

Typically, the business processes of an organization are defined based on the products and

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 63

services that the organization offers, while the business functions are the basis for, for example,

the assignment of resources to tasks and the application support.

A business interaction is a unit of behavior similar to a business process or function, but which

is performed in a collaboration of two or more roles within the organization. Unlike the

interaction concept in AMBER [9], which is an atomic unit of collaborative behavior, the

ArchiMate business interaction can be decomposed into smaller interactions. Although

interactions are external behavior from the perspective of the roles participating in the

collaboration, the behavior is internal to the collaboration as a whole. Similar to processes or

functions, the result of a business interaction can be made available to the environment through a

business service.

A business event is something that happens (externally) and may influence business processes,

functions, or interactions. The business event element is similar to BPMN event elements, to the

trigger element in AMBER [9], and the initial state and final state elements in UML activity

diagrams. However, the ArchiMate business event is more generally applicable in the sense that

it can also be used to model other types of events, in addition to triggers.

In the Business Layer, three types of internal behavior element are defined: business process,

business function, and business interaction.

Figure 58: Business Internal Behavior Elements

Note: This figure does not show all permitted relationships; every element in the language

can have composition, aggregation, and specialization relationships with elements of

the same type. Furthermore, there are indirect relationships that can be derived, as

explained in Section 5.7. The full specification of permitted relationships can be found

in Appendix B.

8.3.1 Business Process

A business process represents a sequence of business behaviors that achieves a specific result

such as a defined set of products or business services.

A business process describes the internal behavior performed by a business role that is required

to produce a set of products and services. For a consumer, the products and services are relevant

and the required behavior is merely a black box, hence the designation “internal”.

A complex business process may be an aggregation of other, finer-grained processes. To each of

these, finer-grained roles may be assigned.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

64 The Open Group Standard (2019)

There is a potential many-to-many relationship between business processes and business

functions. Informally speaking, processes describe some kind of “flow” of activities, whereas

functions group activities according to required skills, knowledge, resources, etc.

A business process may be triggered by, or trigger, any other business behavior element (e.g.,

business event, business process, business function, or business interaction). A business process

may access business objects. A business process may realize one or more business services and

may use (internal) business services or application services. A business role may be assigned to a

business process to perform this process manually. An automated business process can be

realized by an application process. The name of a business process should clearly indicate a

predefined sequence of actions using a verb or verb-noun combination and may include the word

“process”. Examples are “adjudicate claim”, “employee on-boarding”, “approval process”, or

“financial reporting”.

In an ArchiMate model, the existence of business processes is depicted. High-level business,

end-to-end processes, macro flows, and workflows can all be expressed with the same business

process element in the ArchiMate language. It does not, however, list the flow of activities in

detail. This is typically done during business process modeling, where a business process can be

expanded using a business process design language; e.g., BPMN [12].

Figure 59: Business Process Notation

8.3.2 Business Function

A business function represents a collection of business behavior based on a chosen set of criteria

(typically required business resources and/or competencies), closely aligned to an organization,

but not necessarily explicitly governed by the organization.

Just like a business process, a business function also describes internal behavior performed by a

business role. However, while a business process groups behavior based on a sequence or flow

of activities that is needed to realize a product or service, a business function typically groups

behavior based on required business resources, skills, competencies, knowledge, etc.

There is a potential many-to-many relation between business processes and business functions.

Complex processes in general involve activities that offer various functions. In this sense, a

business process forms a string of business functions. In general, a business function delivers

added value from a business point of view. Organizational units or applications may coincide

with business functions due to their specific grouping of business activities.

A business function may be triggered by, or trigger, any other business behavior element

(business event, business process, business function, or business interaction). A business

function may access business objects. A business function may realize one or more business

services and may be served by business, application, or technology services. A business role

may be assigned to a business function. The name of a business function should clearly indicate

a well-defined behavior. Examples are customer management, claims administration, member

services, recycling, or payment processing.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 65

Figure 60: Business Function Notation

8.3.3 Business Interaction

A business interaction represents a unit of collective business behavior performed by (a

collaboration of) two or more business actors, business roles, or business collaborations.

A business interaction is similar to a business process/function, but while a process/function may

be performed by a single role, an interaction is performed by a collaboration of multiple roles.

The roles in the collaboration share the responsibility for performing the interaction.

A business interaction may be triggered by, or trigger, any other business behavior element

(business event, business process, business function, or business interaction). A business

interaction may access business objects. A business interaction may realize one or more business

services and may use (internal) business services or application services. A business

collaboration or two or more business actors or roles may be assigned to a business interaction.

The name of a business interaction should preferably be a verb in the simple present tense.

Figure 61: Business Interaction Notation

8.3.4 Business Event

A business event represents an organizational state change.

Business processes and other business behavior may be triggered or interrupted by a business

event. Also, business processes may raise events that trigger other business processes, functions,

or interactions. Unlike business processes, functions, and interactions, a business event is

instantaneous: it does not have duration. Events may originate from the environment of the

organization (e.g., from a customer), but also internal events may occur generated by, for

example, other processes within the organization.

A business event may have a time attribute that denotes the moment or moments at which the

event happens. For example, this can be used to model time schedules; e.g., to model an event

that triggers a recurring business process to execute every first Monday of the month.

A business event may trigger or be triggered (raised) by a business process, business function, or

business interaction. A business event may access a business object and may be composed of

other business events. The name of a business event should preferably be a verb in the perfect

tense; e.g., “claim received”.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

66 The Open Group Standard (2019)

Figure 62: Business Event Notation

8.3.5 Business Service

A business service represents explicitly defined behavior that a business role, business actor, or

business collaboration exposes to its environment.

A business service exposes the functionality of business roles or collaborations to their

environment. This functionality is accessed through one or more business interfaces.

A business service should provide a unit of behavior that is meaningful from the point of view of

the environment. It has a purpose, which states this utility. The environment includes the

(behavior of) users from outside as well as inside the organization. Business services can be

external, customer-facing services (e.g., a travel insurance service) or internal support services

(e.g., a resource management service).

A business service is associated with a value. A business service may serve a business process,

business function, or business interaction. A business process, business function, or business

interaction may realize a business service. A business interface may be assigned to a business

service. A business service may access business objects. The name of a business service should

preferably be a verb ending with “-ing”; e.g., transaction processing. Also, a name explicitly

containing the word “service” may be used.

Figure 63: Business Service Notation

8.3.6 Example

“Claims Administration” is a business function that is composed of a number of business

processes and a business interaction. This business function realizes a “Claims Processing”

business service. A business event “Claim Filed” triggers the first business process “Accept

Claim”, which in turn triggers a business process “Assign Claim”. Depending on the type of

claim, either the business process “Adjudicate Standard Claim” or the business interaction

“Adjudicate High-Risk Claim” is performed. Adjudication of high-risk claims is a business

interaction because, according to the company policy, two people should always be involved in

this activity to minimize the risk of fraud. After adjudication, the business processes “Notify

Customer” and “Pay Claim” are performed in parallel, and when both have finished, business

process “Close Claim” is triggered.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 67

Example 24: Business Behavior Elements

8.4 Passive Structure Elements

The passive structure aspect of the Business Layer contains the passive structure elements

(business objects) that are manipulated by behavior, such as business processes or functions. The

passive entities represent the important concepts in which the business thinks about a domain.

In the Business Layer, there are two main types of passive structure elements: business object

and representation. Furthermore, a contract, used in the context of a product, is a specialization

of a business object.

Figure 64: Business Passive Structure Elements

8.4.1 Business Object

A business object represents a concept used within a particular business domain.

As explained in Section 3.6, the ArchiMate language in general focuses on the modeling of

types, not instances, since this is the most relevant at the Enterprise Architecture level of

description. Hence a business object typically models an object type (cf. a UML class) of which

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

68 The Open Group Standard (2019)

multiple instances may exist in operations. Only occasionally, business objects represent actual

instances of information produced and consumed by behavior elements such as business

processes. This is in particular the case for singleton types; i.e., types that have only one

instance.

A wide variety of types of business objects can be defined. Business objects are passive in the

sense that they do not trigger or perform processes. A business object could be used to represent

information assets that are relevant from a business point of view and can be realized by data

objects.

Business objects may be accessed (e.g., in the case of information objects, they may be created,

read, or written) by a business process, function, business interaction, business event, or business

service. A business object may have association, specialization, aggregation, or composition

relationships with other business objects. A business object may be realized by a representation

or by a data object (or both). The name of a business object should preferably be a noun.

Figure 65: Business Object Notation

8.4.2 Contract

A contract represents a formal or informal specification of an agreement between a provider and

a consumer that specifies the rights and obligations associated with a product and establishes

functional and non-functional parameters for interaction.

The contract element may be used to model a contract in the legal sense, but also a more

informal agreement associated with a product. It may also be or include an SLA describing an

agreement about the functionality and quality of the services that are part of a product. A

contract is a specialization of a business object.

The relationships that apply to a business object also apply to a contract. In addition, a contract

may have an aggregation relationship with a product. The name of a contract is preferably a

noun.

Figure 66: Contract Notation

8.4.3 Representation

A representation represents a perceptible form of the information carried by a business object.

Representations (for example, messages or documents) are the perceptible carriers of

information that are related to business objects. If relevant, representations can be classified in

various ways; for example, in terms of medium (electronic, paper, audio, etc.) or format (HTML,

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 69

ASCII, PDF, RTF, etc.). A single business object can have a number of different representations.

Also, a single representation can realize one or more specific business objects.

A meaning can be associated with a representation that carries this meaning. The name of a

representation is preferably a noun.

Figure 67: Representation Notation

8.4.4 Example

The business object “Claim” may be realized by either of the following three physical

representations (in different stages of the claims administration process): “Submission Form”,

“Claim File Summary”, or “Claim Letter”. All of these representations refer to a representation

“Policy Summary”, which realizes a contract “Insurance Policy”.

Example 25: Business Passive Structure Elements

8.5 Composite Elements

The Business Layer contains one composite element: product. This aggregates or composes

services and passive structure elements across the layers of the ArchiMate core language.

Figure 68 shows the applicable part of the metamodel. This crosses layers, as also described in

Chapter 12.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

70 The Open Group Standard (2019)

Figure 68: Product Metamodel

8.5.1 Product

A product represents a coherent collection of services and/or passive structure elements,

accompanied by a contract/set of agreements, which is offered as a whole to (internal or

external) customers.

This definition covers both intangible, services-based, or information products that are common

in information-intensive organizations, and tangible, physical products. A financial or

information product consists of a collection of services, and a contract that specifies the

characteristics, rights, and requirements associated with the product. “Buying” a product gives

the customer the right to use the associated services.

Generally, the product element is used to specify a product type. The number of product types in

an organization is typically relatively stable compared to, for example, the processes that realize

or support the products. “Buying” is usually one of the services associated with a product, which

results in a new instance of that product (belonging to a specific customer). Similarly, there may

be services to modify or destroy a product.

A product may aggregate or compose business services, application services, and technology

services, business objects, data objects, and technology objects, as well as a contract. Hence a

product may aggregate or compose elements from other layers than the Business Layer.

A value may be associated with a product. The name of a product is usually the name which is

used in the communication with customers, or possibly a more generic noun (e.g., “travel

insurance”).

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 71

Figure 69: Product Notation

8.5.2 Example

A product “Insurance” consists of a contract “Insurance Policy” and a business service

“Customer Service”, which aggregates four other business services: “Application”, “Renewal”,

“Claims Processing”, and “Appeal”. An “Auto Insurance” product is a specialization of the

generic “Insurance” product, with an additional business service “Drive Well and Save”, and

accompanying contract “Drive Well and Save Agreement”.

Example 26: Business Composite Element: Product

8.6 Summary of Business Layer Elements

Table 6 gives an overview of the Business Layer elements, with their definitions.

Table 6: Business Layer Elements

Element Description Notation

Business actor Represents a business entity that is capable

of performing behavior.

Business role Represents the responsibility for

performing specific behavior, to which an

actor can be assigned, or the part an actor

plays in a particular action or event.

Business

collaboration

Represents an aggregate of two or more

business internal active structure elements

that work together to perform collective

behavior.

Business interface Represents a point of access where a

business service is made available to the

environment.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

72 The Open Group Standard (2019)

Element Description Notation

Business process Represents a sequence of business

behaviors that achieves a specific result

such as a defined set of products or

business services.

Business function Represents a collection of business

behavior based on a chosen set of criteria

(typically required business resources

and/or competencies), closely aligned to an

organization, but not necessarily explicitly

governed by the organization.

Business interaction Represents a unit of collective business

behavior performed by (a collaboration of)

two or more business actors, business

roles, or business collaborations.

Business event Represents an organizational state change.

Business service Represents explicitly defined behavior that

a business role, business actor, or business

collaboration exposes to its environment.

Business object Represents a concept used within a

particular business domain.

Contract Represents a formal or informal

specification of an agreement between a

provider and a consumer that specifies the

rights and obligations associated with a

product and establishes functional and non-

functional parameters for interaction.

Representation Represents a perceptible form of the

information carried by a business object.

Product Represents a coherent collection of

services and/or passive structure elements,

accompanied by a contract/set of

agreements, which is offered as a whole to

(internal or external) customers.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 73

9 Application Layer

The Application Layer elements are typically used to model the Application Architecture that

describes the structure, behavior, and interaction of the applications of the enterprise.

9.1 Application Layer Metamodel

Figure 70 gives an overview of the Application Layer elements and their relationships.

Whenever applicable, inspiration has been drawn from the analogy with the Business Layer.

Figure 70: Application Layer Metamodel

Note: This figure does not show all permitted relationships; every element in the language

can have composition, aggregation, and specialization relationships with elements of

the same type. Furthermore, there are indirect relationships that can be derived, as

explained in Section 5.7.

9.2 Active Structure Elements

The main active structure element for the Application Layer is the application component. This

element is used to model any structural entity in the Application Layer: not just (re-usable)

software components that can be part of one or more applications, but also complete software

applications, sub-applications, or information systems. Although very similar to the UML

component, the ArchiMate application component element strictly models the structural aspect

of an application; its behavior is modeled by an explicit relationship to the behavior element.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

74 The Open Group Standard (2019)

The inter-relationships of components also form essential parts of the Application Architecture.

Therefore, we also introduce the element of application collaboration here (see Figure 71),

defined as a collective of application components which perform application interactions. The

element is very similar to the collaboration as defined in the UML standard [7], [8].

Figure 71: Application Internal Active Structure Elements

Note: This figure does not show all permitted relationships; every element in the language

can have composition, aggregation, and specialization relationships with elements of

the same type. Furthermore, there are indirect relationships that can be derived, as

explained in Section 5.7.

In the purely structural sense, an application interface is the (logical) channel through which the

services of a component can be accessed. In a broader sense (as used in, among others, the UML

definition), an application interface defines some elementary behavioral characteristics: it

defines the set of operations and events that are provided by the component. Thus, it is used to

describe the functionality of a component. The application interface element can be used to

model both application-to-application interfaces, which offer internal application services, and

application-to-business interfaces (and/or user interfaces), which offer external application

services.

9.2.1 Application Component

An application component represents an encapsulation of application functionality aligned to

implementation structure, which is modular and replaceable.

An application component is a self-contained unit. As such, it is independently deployable, re-

usable, and replaceable. An application component performs one or more application functions.

It encapsulates its behavior and data, exposes services, and makes them available through

interfaces. Cooperating application components are connected via application collaborations.

An application component may be assigned to one or more application functions. An application

component has one or more application interfaces, which expose its functionality. Application

interfaces of other application components may serve an application component. The name of an

application component should preferably be a noun.

The application component element is used to model entire applications (i.e., deployed and

operational IT systems, as defined by the TOGAF framework [4]) and individual parts of such

applications, at all relevant levels of detail. Application components can realize other application

components. This is explained in Section 3.6.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 75

Figure 72: Application Component Notation

9.2.2 Application Collaboration

An application collaboration represents an aggregate of two or more application internal active

structure elements that work together to perform collective application behavior.

An application collaboration specifies which application components or other application

collaborations cooperate to perform some task. The collaborative behavior, including, for

example, the communication pattern of these components, is modeled by an application

interaction. An application collaboration typically models a logical or temporary collaboration of

application components and does not exist as a separate entity in the enterprise.

Application collaboration is a specialization of application internal active structure element, and

aggregates two or more (cooperating) application components or other application

collaborations. An application collaboration is an active structure element that may be assigned

to one or more application interactions or other application internal behavior elements, which

model the associated behavior. An application interface may serve an application collaboration,

and an application collaboration may be composed of application interfaces. The name of an

application collaboration should preferably be a noun.

Figure 73: Application Collaboration Notation

9.2.3 Application Interface

An application interface represents a point of access where application services are made

available to a user, another application component, or a node.

An application interface specifies how the functionality of a component can be accessed by other

elements. An application interface exposes application services to the environment. The same

application service may be exposed through different interfaces, and the same interface may

expose multiple services.

In a sense, an application interface specifies a contract that a component making this interface

available must fulfill. This may include parameters, protocols used, pre- and post-conditions, and

data formats.

An application interface may be part of an application component through composition, which

means that these interfaces are provided by that component and can serve other application

components. An application interface can be assigned to application services, which means that

the interface exposes these services to the environment. The name of an application interface

should preferably be a noun.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

76 The Open Group Standard (2019)

Figure 74: Application Interface Notation

9.2.4 Example

The “Online Travel Insurance Sales” application collaboration aggregates two application

components: “Quotation” and “Purchase”. The application collaboration provides an application

interface “Web Services Interface” that serves another application component “Travel Website”.

Example 27: Application Active Structure Elements

9.3 Behavior Elements

Behavior in the Application Layer is described in a way that is very similar to Business Layer

behavior. As in the Business Layer, a distinction is made between the external behavior of

application components in terms of application services, and the internal behavior of these

components; e.g., application functions that realize these services.

An application service is an externally visible unit of behavior, provided by one or more

components, exposed through well-defined interfaces, and meaningful to the environment. The

service element provides a way to explicitly describe the functionality that components share

with each other and the functionality that they make available to the environment. The concept

fits well within service-oriented application architecture. The functionality that an interactive

computer program provides through a user interface is also modeled using an application

service, exposed by an application-to-business interface representing the user interface. Internal

application services are exposed through an application-to-application interface.

An application function describes the internal behavior of a component needed to realize one or

more application services. In analogy with the Business Layer, an application process models an

ordering of application behavior, as a counterpart of a business process. Note that the internal

behavior of a component should in most cases not be modeled in too much detail in an

architectural description, because for the description of this behavior we may soon be confronted

with detailed design issues.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 77

An application interaction is the behavior of a collaboration of two or more application

components. An application interaction is external behavior from the perspective of each of the

participating components, but the behavior is internal to the collaboration as a whole.

Figure 75: Application Internal Behavior Elements

Note: This figure does not show all permitted relationships; every element in the language

can have composition, aggregation, and specialization relationships with elements of

the same type. Furthermore, there are indirect relationships that can be derived, as

explained in Section 5.7.

9.3.1 Application Function

An application function represents automated behavior that can be performed by an application

component.

An application function describes the internal behavior of an application component. If this

behavior is exposed externally, this is done through one or more services. An application

function abstracts from the way it is implemented. Only the necessary behavior is specified.

An application function may realize one or more application services. Application services of

other application functions and technology services may serve an application function. An

application function may access data objects. An application component may be assigned to an

application function (which means that the application component performs the application

function). The name of an application function should preferably be a verb ending with “-ing”;

e.g., “accounting”.

Figure 76: Application Function Notation

9.3.2 Application Interaction

An application interaction represents a unit of collective application behavior performed by (a

collaboration of) two or more application components.

An application interaction describes the collective behavior that is performed by the components

that participate in an application collaboration. This may, for example, include the

communication pattern between these components. An application interaction can also specify

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

78 The Open Group Standard (2019)

the joint behavior needed to realize an application service. The details of the interaction between

the application components involved in an application interaction can be expressed during the

detailed application design using, for example, a UML interaction diagram.

An application collaboration or two or more individual application components may be assigned

to an application interaction. An application interaction may realize application services.

Business services, application services, and technology services may serve an application

interaction. An application interaction may access data objects. The name of an application

interaction should clearly identify a series of application behaviors; e.g., “client profile creation”

or “update customer records”.

Figure 77: Application Interaction Notation

9.3.3 Application Process

An application process represents a sequence of application behaviors that achieves a specific

result.

An application process describes the internal behavior performed by an application component

that is required to realize a set of services. For a (human or automated) consumer the services are

relevant and the required behavior is merely a black box, hence the designation “internal”.

An application process may realize application services. Other application services may serve

(be used by) an application process. An application process may access data objects. An

application component may be assigned to an application process (which means that this

component performs the process). The name of an application process should clearly identify a

series of application behaviors using a verb or verb-noun combination; e.g., “claims adjudication

process”, or “general ledger update job”.

Figure 78: Application Process Notation

9.3.4 Application Event

An application event represents an application state change.

Application functions and other application behavior may be triggered or interrupted by an

application event. Also, application behavior may raise events that trigger other application

behavior. Unlike processes, functions, and interactions, an event is instantaneous; it does not

have duration. Events may originate from the environment of the organization (e.g., from an

external application), but also internal events may occur generated by, for example, other

applications within the organization.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 79

An application event may have a time attribute that denotes the moment or moments at which

the event happens. For example, this can be used to model time schedules; e.g., an event that

triggers a daily batch process.

An application event may trigger or be triggered (raised) by an application function, process, or

interaction. An application event may access a data object and may be composed of other

application events. The name of an application event should preferably be a verb in the perfect

tense; e.g., “claim received”.

Figure 79: Application Event Notation

9.3.5 Application Service

An application service represents an explicitly defined exposed application behavior.

An application service exposes the functionality of components to their environment. This

functionality is accessed through one or more application interfaces. An application service is

realized by one or more application functions that are performed by the component. It may

require, use, and produce data objects.

An application service should be meaningful from the point of view of the environment; it

should provide a unit of behavior that is, in itself, useful to its users. It has a purpose, which

states this utility to the environment. This means, for example, that if this environment includes

business processes, application services should have business relevance.

A purpose may be associated with an application service. An application service may serve

business processes, business functions, business interactions, or application functions. An

application function may realize an application service. An application interface may be

assigned to an application service. An application service may access data objects. The name of

an application service should preferably be a verb ending with “-ing”; e.g., “transaction

processing”. Also, a name explicitly containing the word “service” may be used.

Figure 80: Application Service Notation

9.3.6 Example

The “Purchase Travel Insurance” application function is composed of two other application

functions: “Prepare Quotation”, realizing an application service “Get Quotation”, and “Finalize

Purchase”, realizing an application service “Purchase Quoted Insurance”. These application

functions model the behavior of the “Quotation” and “Purchase” application components of

Example 27. An application event “Request for a Quotation” triggers an application process

“Obtain Travel Insurance”, which is served by the two aforementioned application services.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

80 The Open Group Standard (2019)

Example 28: Application Behavior Elements

9.4 Passive Structure Elements

The passive counterpart of the application component in the Application Layer is called a data

object. This element is used in the same way as data objects (or object types) in well-known data

modeling approaches, most notably the “class” concept in UML class diagrams. A data object

can be seen as a representation of a business object, as a counterpart of the representation

element in the Business Layer. The ArchiMate language does not define a specific layer for

information; however, elements such as business objects and data objects are used to represent

the information entities and also the logical data components that realize the business objects.

9.4.1 Data Object

A data object represents data structured for automated processing.

A data object should be a self-contained piece of information with a clear meaning to the

business, not just to the application level. Typical examples of data objects are a customer

record, a client database, or an insurance claim.

As explained in Section 3.6, the ArchiMate language in general focuses on the modeling of

types, not instances, since this is the most relevant at the Enterprise Architecture level of

description. Hence a data object typically models an object type (cf. a UML class) of which

multiple instances may exist in operational applications. An important exception is when a data

object is used to model a data collection such as a database, of which only one instance exists.

An application function or process can operate on data objects. A data object may be

communicated via interactions and used or produced by application services. A data object can

be accessed by an application function, application interaction, or application service. A data

object may realize a business object and may be realized by an artifact. A data object may have

association, specialization, aggregation, or composition relationships with other data objects.

The name of a data object should preferably be a noun.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 81

Figure 81: Data Object Notation

9.4.2 Example

An “Online Insurance Quotation” data object is composed of three other data objects: “Quoted

Price”, “Terms and Conditions”, and “Certificate of Authenticity”. “Auto Insurance Quotation”

and “Travel Insurance Quotation” are two specializations of the “Online Insurance Quotation”

data object. “Travel Insurance Quotation” contains an additional data object “Purchased

Itinerary”.

Example 29: Application Passive Structure Elements

9.5 Summary of Application Layer Elements

Table 7 gives an overview of the Application Layer elements, with their definitions.

Table 7: Application Layer Elements

Element Definition Notation

Application

component

Represents an encapsulation of

application functionality aligned to

implementation structure, which is

modular and replaceable.

Application

collaboration

Represents an aggregate of two or more

application internal active structure

elements that work together to perform

collective application behavior.

Application

interface

Represents a point of access where

application services are made available

to a user, another application

component, or a node.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

82 The Open Group Standard (2019)

Element Definition Notation

Application

function

Represents automated behavior that can

be performed by an application

component.

Application

interaction

Represents a unit of collective

application behavior performed by (a

collaboration of) two or more

application components.

Application process Represents a sequence of application

behaviors that achieves a specific result.

Application event Represents an application state change.

Application service Represents an explicitly defined

exposed application behavior.

Data object Represents data structured for

automated processing.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 83

10 Technology Layer

The Technology Layer elements are typically used to model the Technology Architecture of the

enterprise, describing the structure and behavior of the technology infrastructure of the

enterprise.

10.1 Technology Layer Metamodel

Figure 82 gives an overview of the Technology Layer elements and their relationships.

Whenever applicable, inspiration is drawn from the analogy with the Business and Application

Layers. In the following sections, several more elements will be introduced.

Figure 82: Technology Layer Metamodel

Note: This figure does not show all permitted relationships; every element in the language

can have composition, aggregation, and specialization relationships with elements of

the same type. Furthermore, there are indirect relationships that can be derived, as

explained in Section 5.7.

10.2 Active Structure Elements

The main active structure element for the Technology Layer is the node. This element is used to

model structural entities in this layer. It strictly models the structural aspect of a system: its

behavior is modeled by an explicit relationship to the behavior element.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

84 The Open Group Standard (2019)

A technology interface is the (logical) place where the technology services offered by a node can

be accessed by other nodes or by application components from the Application Layer.

Nodes come in several forms, including device and system software. A device models a physical

computational resource, upon which artifacts may be deployed for execution. System software is

an infrastructural software component running on a device. Typically, a node consists of a

number of sub-nodes; for example, a device such as a server and system software to model the

operating system.

The inter-relationships of components in the Technology Layer are mainly formed by the

communication infrastructure. The path models the relation between two or more nodes, through

which these nodes can exchange information. The physical realization of a path is modeled with

a communication network; i.e., a physical communication medium between two or more devices

(or other networks).

Figure 83: Technology Active Structure Elements

Note: This figure does not show all permitted relationships; every element in the language

can have composition, aggregation, and specialization relationships with elements of

the same type. Furthermore, there are indirect relationships that can be derived, as

explained in Section 5.7.

10.2.1 Node

A node represents a computational or physical resource that hosts, manipulates, or interacts with

other computational or physical resources.

Nodes are active structure elements that perform technology behavior and execute, store, and

process technology objects such as artifacts (or materials, as outlined in Chapter 11). For

instance, nodes are used to model application platforms, defined by the TOGAF framework [4]

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 85

as: “a collection of technology components of hardware and software that provide the services

used to support applications”.

Nodes can be interconnected by paths. A node may be assigned to an artifact to model that the

artifact is deployed on the node.

The name of a node should preferably be a noun. A node may consist of sub-nodes.

Artifacts deployed on a node may either be drawn inside the node or connected to it with an

assignment relationship.

Figure 84: Node Notation

10.2.2 Device

A device represents a physical IT resource upon which system software and artifacts may be

stored or deployed for execution.

A device is a specialization of a node that represents a physical IT resource with processing

capability. It is typically used to model hardware systems such as mainframes, PCs, or routers.

Usually, they are part of a node together with system software. Devices may be composite; i.e.,

consist of sub-devices.

Devices can be interconnected by communication networks. Devices can be assigned to artifacts

and to system software, to model that artifacts and system software are deployed on that device.

A node can contain one or more devices.

The name of a device should preferably be a noun referring to the type of hardware; e.g., “IBM

System z mainframe”.

Different icons may be used to distinguish between different types of devices; e.g., mainframes

and PCs.

Figure 85: Device Notation

10.2.3 System Software

System software represents software that provides or contributes to an environment for storing,

executing, and using software or data deployed within it.

System software is a specialization of a node that is used to model the software environment in

which artifacts run. This can be, for example, an operating system, a JEE application server, a

database system, or a workflow engine. Also, system software can be used to represent, for

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

86 The Open Group Standard (2019)

example, communication middleware. Usually, system software is combined with a device

representing the hardware environment to form a general node.

A device or system software can be assigned to other system software; e.g., to model different

layers of software running on top of each other. System software can be assigned to artifacts, to

model that these artifacts are deployed on that software. System software can realize other

system software. A node can be composed of system software.

The name of system software should preferably be a noun referring to the type of execution

environment; e.g., “JEE server”. System software may be composed of other system software;

e.g., an operating system containing a database.

Figure 86: System Software Notation

10.2.4 Technology Collaboration

A technology collaboration represents an aggregate of two or more technology internal active

structure elements that work together to perform collective technology behavior.

A technology collaboration specifies which nodes and/or other technology collaborations

cooperate to perform some task. The collaborative behavior, including, for example, the

communication pattern of these nodes, is modeled by a technology interaction. A technology

collaboration typically models a logical or temporary collaboration of nodes and does not exist

as a separate entity in the enterprise.

Technology collaboration is a specialization of technology internal active structure element, and

aggregates two or more (cooperating) nodes and/or other technology collaborations. A

technology collaboration is an internal active structure element that may be assigned to one or

more technology interactions or other technology internal behavior elements, which model the

associated behavior. A technology interface may serve a technology collaboration, and a

technology collaboration may be composed of technology interfaces. The name of a technology

collaboration should preferably be a noun.

Figure 87: Technology Collaboration Notation

10.2.5 Technology Interface

A technology interface represents a point of access where technology services offered by a node

can be accessed.

A technology interface specifies how the technology services of a node can be accessed by other

nodes. A technology interface exposes a technology service to the environment. The same

service may be exposed through different interfaces.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 87

In a sense, a technology interface specifies a kind of contract that a component realizing this

interface must fulfill. This may include, for example, parameters, protocols used, pre- and post-

conditions, and data formats.

A technology interface may be part of a node through composition, which means that these

interfaces are provided by that node and can serve other nodes. A technology interface can be

assigned to a technology service, to expose that service to the environment.

The name of a technology interface should preferably be a noun.

Figure 88: Technology Interface Notation

Note: In previous versions of this standard, this element was called “infrastructure interface”.

This usage is still permitted but deprecated and will be removed from a future version

of the standard.

10.2.6 Path

A path represents a link between two or more nodes, through which these nodes can exchange

data, energy, or material.

A path is used to model the logical communication (or distribution) relations between nodes. It is

realized by one or more communication networks (or distribution networks when modeling

physical elements; see Chapter 11), which represent the physical communication (or

distribution) links. The properties (e.g., bandwidth, latency) of a path are usually aggregated

from these underlying networks.

A path connects two or more nodes. A path is realized by one or more networks. A path can

aggregate nodes.

Figure 89: Path Notation

10.2.7 Communication Network

A communication network represents a set of structures that connects nodes for transmission,

routing, and reception of data.

A communication network represents the physical communication infrastructure. It “provides

the basic services to interconnect systems and provide the basic mechanisms for opaque transfer

of data. It contains the hardware and software elements which make up the networking and

physical communications links used by a system, and of course all the other systems connected

to the network”, as described by the TOGAF Series Guide: The TOGAF Technical Reference

Model (TRM) [19].

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

88 The Open Group Standard (2019)

A communication network connects two or more devices. The most basic communication

network is a single link between two devices, but it may comprise multiple links and associated

network equipment. A network has properties such as bandwidth and latency. A communication

network realizes one or more paths. It embodies the physical realization of the logical path

between nodes.

A communication network can consist of sub-networks. It can aggregate devices and system

software, for example, to model the routers, switches, and firewalls that are part of the network

infrastructure.

Figure 90: Communication Network Notation

Note: Formerly, this element was called “network”. This usage is still permitted but

deprecated and will be removed from a future version of the standard.

10.2.8 Example

Two “Blade System” devices are connected to a communication network “Data Center

Network”. This in turn is connected to another communication network “Wide Area Network”

through a node “Data Center Switch”. The two communication networks together realize a path

“Data Replication Path”. Both “Blade System” devices and the “Data Center Switch” node have

a technology interface “Management Interface”. Device “Blade System 1” deploys “Hypervisor”

system software for hardware virtualization. Two system software components are deployed on

the “Hypervisor”: an “Open Source Operating System” and a “Proprietary Operating System”,

creating two virtual hosts, modeled as nodes “Quotation Virtual Host” and “Purchase Virtual

Host”.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 89

Example 30: Technology Active Structure Elements

10.3 Behavior Elements

Behavior elements in the Technology Layer are similar to the behavior elements in the other

layers. As in the Business and Application Layers, a distinction is made between the external

behavior of nodes in terms of technology services, and the internal behavior of these nodes; i.e.,

technology functions, technology processes, and technology interactions that realize these

services.

Figure 91: Technology Internal Behavior Elements

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

90 The Open Group Standard (2019)

10.3.1 Technology Function

A technology function represents a collection of technology behavior that can be performed by a

node.

A technology function describes the internal behavior of a node; for the user of a node that

performs a technology function, this function is invisible. If its behavior is exposed externally,

this is done through one or more technology services. A technology function abstracts from the

way it is implemented. Only the necessary behavior is specified.

A technology function may realize technology services. Technology services of other technology

functions may serve technology functions. A technology function may access technology

objects. A node may be assigned to a technology function (which means that the node performs

the technology function). The name of a technology function should preferably be a verb ending

with “-ing”.

Figure 92: Technology Function Notation

Note: In previous versions of this standard, this element was called “infrastructure function”.

This usage is still permitted but deprecated and will be removed from a future version

of the standard.

10.3.2 Technology Process

A technology process represents a sequence of technology behaviors that achieves a specific

result.

A technology process describes internal behavior of a node; for the user of that node, this

process is invisible. It its behavior is exposed externally, this is done through one or more

technology services. A technology process abstracts from the way it is implemented. Only the

necessary behavior is specified. It can use technology objects as input and use or transform these

to produce other technology objects as output.

A technology process may realize technology services. Other technology services may serve (be

used by) a technology process. A technology process may access technology objects. A node

may be assigned to a technology process, which means that this node performs the process. The

name of a technology process should clearly identify a series of technology behaviors using a

verb or verb-noun combination; e.g., “Boot up system” or “Replicate database”.

Figure 93: Technology Process Notation

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 91

10.3.3 Technology Interaction

A technology interaction represents a unit of collective technology behavior performed by (a

collaboration of) two or more nodes.

A technology interaction describes the collective behavior that is performed by two or more

nodes, possibly via their participation in a technology collaboration. This may, for example,

include the communication pattern between these components. A technology interaction can also

specify the joint behavior needed to realize a technology service. The details of the interaction

between the nodes involved in a technology interaction can be expressed during the detailed

design using, for example, a UML interaction diagram.

A technology collaboration or two or more nodes may be assigned to a technology interaction. A

technology interaction may realize technology services. Technology services may serve a

technology interaction. A technology interaction may access artifacts. The name of a technology

interaction should clearly identify a series of technology behaviors; e.g., “client profile creation”

or “update customer records”.

Figure 94: Technology Interaction Notation

10.3.4 Technology Event

A technology event represents a technology state change.

Technology functions and other technology behavior may be triggered or interrupted by a

technology event. Also, technology functions may raise events that trigger other infrastructure

behavior. Unlike processes, functions, and interactions, an event is instantaneous: it does not

have duration. Events may originate from the environment of the organization, but also internal

events may occur generated by, for example, other devices within the organization.

A technology event may have a time attribute that denotes the moment or moments at which the

event happens. For example, this can be used to model time schedules; e.g., to model an event

that triggers a recurring infrastructure function such as making a daily backup.

A technology event may trigger or be triggered (raised) by a technology function, process, or

interaction. A technology event may access a data object and may be composed of other

technology events. The name of a technology event should preferably be a verb in the perfect

tense; e.g., “message received”.

Figure 95: Technology Event Notation

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

92 The Open Group Standard (2019)

10.3.5 Technology Service

A technology service represents an explicitly defined exposed technology behavior.

A technology service exposes the functionality of a node to its environment. This functionality is

accessed through one or more technology interfaces. It may require, use, and produce artifacts.

A technology service should be meaningful from the point of view of the environment; it should

provide a unit of behavior that is, in itself, useful to its users, such as application components

and nodes.

Typical technology services may, for example, include messaging, storage, naming, and

directory services. It may access artifacts; e.g., a file containing a message.

A technology service may serve application components or nodes. A technology service is

realized by a technology function or process. A technology service is exposed by a node by

assigning technology interfaces to it. A technology service may access artifacts. A technology

service may consist of sub-services.

The name of a technology service should preferably be a verb ending with “-ing”; e.g.,

“messaging”. Also, a name explicitly containing the word “service” may be used.

Figure 96: Technology Service Notation

Note: In previous versions of this standard, this element was called “infrastructure service”.

This usage is still permitted but deprecated and will be removed from a future version

of the standard.

10.3.6 Example

A technology event “Database Update” triggers a technology process “Replicate Remote Data”,

which is served by a technology service “Database Update Replication”. This technology service

is realized by a technology function “Database Replication”, which is composed of four other

technology functions: “Administrate Replication”, “Handle Local Updates”, “Handle Remote

Updates”, and “Monitor Replication Status”. There are information flows from the

“Administrate Replication” technology function to the other three technology functions.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 93

Example 31: Technology Behavior Elements

10.4 Passive Structure Elements

Technology objects model the passive structure elements that are used and processed by the

infrastructure. Technology objects represent the “physical” objects manipulated by the

infrastructure of an enterprise. Technology objects are abstract elements; i.e., they are not

instantiated in models but serve as the generic type of the things manipulated by the Technology

Layer. This may include both artifacts (e.g., files) and physical material.

Figure 97: Technology Passive Structure Elements

Technology objects may be accessed by technology behavior (functions, processes, interactions,

events, and services). A technology object may have association, specialization, aggregation, or

composition relationships with other technology objects. A technology object may realize a data

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

94 The Open Group Standard (2019)

object or business object. It may be an artifact or material (from the physical elements). The

name of a technology object should preferably be a noun.

10.4.1 Artifact

An artifact represents a piece of data that is used or produced in a software development process,

or by deployment and operation of an IT system.

An artifact represents a “physical” element in the IT world. Artifact is a specialization of

technology object. It is typically used to model (software) products such as source files,

executables, scripts, database tables, messages, documents, specifications, and model files. An

instance (copy) of an artifact can be deployed on a node. An artifact could be used to represent a

physical data component that realizes a data object.

An application component or system software may be realized by one or more artifacts. A data

object may be realized by one or more artifacts. A node may be assigned to an artifact to model

that the artifact is deployed on the node. Thus, the two typical ways to use the artifact element

are as an execution component or as a data file. In fact, these could be defined as specializations

of the artifact element.

The name of an artifact should preferably be the name of the file it represents; e.g., “order.jar”.

An artifact may consist of sub-artifacts.

Figure 98: Artifact Notation

10.4.2 Example

A “Web Archive” artifact (which may realize an application component) is composed of two

other artifacts: “Database Access Java Archive” and “Business Logic Java Archive”. Two

specializations of the “Web Archive” artifact are a “Purchase Application Web Archive” and a

“Quotation Application Web Archive”. A “Travel Insurance Database” artifact (which may

realize a data object) is associated with the “Web Archive” artifact.

Example 32: Technology Passive Structure Element: Artifact

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 95

10.5 Summary of Technology Layer Elements

Table 8 gives an overview of the Technology Layer elements, with their definitions.

Table 8: Technology Layer Elements

Element Definition Notation

Node Represents a computational or

physical resource that hosts,

manipulates, or interacts with other

computational or physical resources.

Device Represents a physical IT resource

upon which system software and

artifacts may be stored or deployed

for execution.

System software Represents software that provides or

contributes to an environment for

storing, executing, and using

software or data deployed within it.

Technology

collaboration

Represents an aggregate of two or

more technology internal active

structure elements that work together

to perform collective technology

behavior.

Technology

interface

Represents a point of access where

technology services offered by a

node can be accessed.

Path Represents a link between two or

more nodes, through which these

nodes can exchange data, energy, or

material.

Communication

network

Represents a set of structures that

connects nodes for transmission,

routing, and reception of data.

Technology

function

Represents a collection of technology

behavior that can be performed by a

node.

Technology

process

Represents a sequence of technology

behaviors that achieves a specific

result.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

96 The Open Group Standard (2019)

Element Definition Notation

Technology

interaction

Represents a unit of collective

technology behavior performed by (a

collaboration of) two or more nodes.

Technology event Represents a technology state

change.

Technology

service

Represents an explicitly defined

exposed technology behavior.

Artifact Represents a piece of data that is

used or produced in a software

development process, or by

deployment and operation of an IT

system.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 97

11 Physical Elements

The physical elements are included as an extension to the Technology Layer for modeling the

physical world.

11.1 Physical Elements Metamodel

Figure 99 gives an overview of the physical elements and their relationships. These are based on

the Technology Layer.

Figure 99: Physical Elements Metamodel

Note: This figure does not show all permitted relationships; every element in the language

can have composition, aggregation, and specialization relationships with elements of

the same type. Furthermore, there are indirect relationships that can be derived, as

explained in Section 5.7.

11.2 Active Structure Elements

The equipment element is the main active structure element within the physical elements. This

element is used to model structural entities in this layer. It is used to model any physical

machinery, tools, instruments, or implements. It strictly models the structural aspect of a system;

its behavior is modeled by an explicit relationship to the behavior elements.

The inter-relationships of physical elements are mainly formed by the logistics infrastructure.

The path element from the Technology Layer models the relation between two or more nodes,

through which these nodes can exchange information or material. The physical realization of a

path is modeled with a distribution network; i.e., a physical connection between two or more

pieces of equipment (or other physical networks). This can be used to model, for example, rail or

road networks, the water supply, power grid, or gas network.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

98 The Open Group Standard (2019)

11.2.1 Equipment

Equipment represents one or more physical machines, tools, or instruments that can create, use,

store, move, or transform materials.

Equipment comprises all active processing elements that carry out physical processes in which

materials (which are a special kind of technology object) are used or transformed. Equipment is

a specialization of the node element from the Technology Layer. Therefore, it is possible to

model nodes that are formed by a combination of IT infrastructure (devices, system software)

and physical infrastructure (equipment); e.g., an MRI scanner at a hospital, a production plant

with its control systems, etc.

Material can be accessed (e.g., created, used, stored, moved, or transformed) by equipment.

Equipment can serve other equipment, and also other active structure elements such as business

roles and actors, and facilities can be assigned to equipment. A piece of equipment can be

composed of other pieces of equipment. Facilities can be assigned to equipment (i.e., equipment

is installed and used in or on a facility). Equipment can be aggregated in a location.

The name of a piece of equipment should preferably be a noun.

Figure 100: Equipment Notation

A useful specialization of equipment is vehicle, for describing, for example, trucks, cars, trains,

ships, and airplanes.

11.2.2 Facility

A facility represents a physical structure or environment.

A facility is a specialization of a node. It represents a physical resource that has the capability of

facilitating (e.g., housing or locating) the use of equipment. It is typically used to model

factories, buildings, or outdoor constructions that have an important role in production or

distribution processes. Examples of facilities include a factory, a laboratory, a warehouse, a

shopping mall, a cave, or a spaceship. Facilities may be composite; i.e., consist of sub-facilities.

Facilities can be interconnected by distribution networks. A facility can serve other facilities,

and also other active structure elements such as business roles and actors. A facility can be

composed of other facilities and can be aggregated in a location.

The name of a facility should preferably be a noun referring to the type of facility; e.g.,

“Rotterdam oil refinery”.

Figure 101: Facility Notation

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 99

11.2.3 Distribution Network

A distribution network represents a physical network used to transport materials or energy.

A distribution network represents the physical distribution or transportation infrastructure. It

embodies the physical realization of the logical paths between nodes.

A distribution network connects two or more nodes. A distribution network may realize one or

more paths. A distribution network can consist of sub-networks and can aggregate facilities and

equipment, for example, to model railway stations and trains that are part of a rail network.

Figure 102: Distribution Network Notation

11.3 Behavior Elements

No separate physical behavior elements are defined. Rather, the behavior elements from the

Technology Layer (technology function, process, interaction, service, and event) are used to

model the behavior of all nodes, including physical equipment. Since equipment will very often

be computer-controlled or in other ways have a close relationship to IT (also think of sensors,

IoT), their behavior can be described in an integral way using the existing technology behavior

concepts.

11.4 Passive Structure Elements

11.4.1 Material

Material represents tangible physical matter or energy.

Material is typically used to model raw materials and physical products, and also energy sources

such as fuel and electricity. Material can be accessed by physical processes.

The name of material should be a noun. Pieces of material may be composed of other pieces of

material.

Figure 103: Material Notation

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

100 The Open Group Standard (2019)

11.5 Example

An “Assembly Line”, modeled as equipment and installed at a facility “Manufacturing Plant”,

makes use of materials “Pre-Assembled Circuit Board”, “Internal Antenna”, and “Plastic Case”

to produce material “Vehicle Telematics Appliance”. The appliance, initially located at the

“Manufacturing Plant” facility, is subsequently transported to the facilities “National

Distribution Center” and “Local Distribution Center”, making use of the distribution networks

“Overseas Shipping” and “Local Trucking”. These distribution networks together realize the

path “Intermodal Freight”.

Example 33: Physical Elements

11.6 Summary of Physical Elements

Table 9 gives an overview of the physical elements, with their definitions.

Table 9: Physical Elements

Element Definition Notation

Equipment Represents one or more physical

machines, tools, or instruments

that can create, use, store, move,

or transform materials.

Facility Represents a physical structure

or environment.

Distribution network Represents a physical network

used to transport materials or

energy.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 101

Element Definition Notation

Material Represents tangible physical

matter or energy.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

102 The Open Group Standard (2019)

12 Relationships Between Core Layers

The previous chapters have presented the concepts to model the Business, Application, and

Technology Layers of an enterprise. However, a central issue in Enterprise Architecture is

business-IT alignment: how can these layers be matched? This chapter describes the

relationships that the ArchiMate language offers to model the link between business,

applications, and technology.

12.1 Alignment of the Business Layer and Lower Layers

Figure 104 shows the relationships between the Business Layer, the Application Layer, and the

Technology Layer elements. There are two main types of relationships between these layers:

1. Serving relationships; for example, between application service and the different types of

business behavior elements, and between application interface and business role; vice

versa, serving relationships between business service and application behavior elements,

and between business interface and application component. These relationships represent

the behavioral and structural aspects of the support of the business by applications.

2. Realization relationships; for example, from an application process or function to a

business process or function, or from a data object or a technology object to a business

object, to indicate that the data object is a digital representation of the corresponding

business object, or the technology object is a physical representation of the business

object.

In addition, there may be an aggregation relationship between a product and an application or

technology service, and a data or technology object, to indicate that these services or objects can

be offered directly to a customer as part of the product.

Figure 104: Relationships Between Business Layer and Application and Technology Layer Elements

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 103

Note: This figure does not show all permitted relationships; there are indirect relationships

that can be derived, as explained in Section 5.7.

12.2 Alignment of the Application and Technology Layers

Figure 105 shows the relationships between Application Layer and Technology Layer elements.

There are two types of relationships between these layers:

1. Serving relationships, between technology service and the different types of application

behavior elements, and between technology interface and application component; vice

versa, serving relationships between application service and technology behavior, and

application interface and node. These relationships represent the behavioral and structural

aspects of the use of technology infrastructure by applications and vice versa.

2. Realization relationships from technology process or function to application process or

function, from technology object to data object, to indicate that the data object is realized

by, for example, a physical data file, from technology object to application component, to

indicate that a physical data file is an executable that realizes an application or part of an

application. (Note: In this case, an artifact represents a “physical” component that is

deployed on a node; this is modeled with an assignment relationship. A (logical)

application component is realized by an artifact and, indirectly, by the node on which the

artifact is deployed.)

Figure 105: Relationships Between Application Layer and Technology Layer Elements

Note: This figure does not show all permitted relationships; there are indirect relationships

that can be derived, as explained in Section 5.7.

Due to the derived relationships that are explained in Section 5.7, it is also possible to draw

relationships directly between the Business and Technology Layers. For example, if a business

object is realized by a data object, which in turn is realized by a technology object, this

technology object indirectly realizes the business object.

12.3 Example

Example 34 shows how the cross-layer relationships integrate the different layers, and how this

can be depicted in one view. It also shows how the optional notation with letters in the upper-left

corner is used to distinguish between layers.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

104 The Open Group Standard (2019)

Example 34: Cross-Layer Relationships

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 105

13 Implementation and Migration Elements

The implementation and migration elements support the implementation and migration of

architectures. This includes modeling implementation programs and projects to support program,

portfolio, and project management. It also includes support for migration planning.

13.1 Implementation and Migration Elements Metamodel

Figure 106 gives an overview of the implementation and migration elements and their

relationships.

Figure 106: Implementation and Migration Metamodel

Note: This figure does not show all permitted relationships; every element in the language

can have composition, aggregation, and specialization relationships with elements of

the same type. Furthermore, there are indirect relationships that can be derived, as

explained in Section 5.7.

13.2 Implementation and Migration Elements

13.2.1 Work Package

A work package represents a series of actions identified and designed to achieve specific results

within specified time and resource constraints.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

106 The Open Group Standard (2019)

The central behavioral element is a work package. A work package is a behavior element that

has a clearly defined start and end date, and realizes a well-defined set of goals or deliverables.

The work package element can be used to model sub-projects or tasks within a project, complete

projects, programs, or project portfolios.

Figure 107: Work Package Notation

Conceptually, a work package is similar to a business process, in that it consists of a set of

causally-related tasks, aimed at producing a well-defined result. However, a work package is a

unique “one-off” process. Still, a work package can be described in a way very similar to the

description of a process.

13.2.2 Deliverable

A deliverable represents a precisely-defined result of a work package.

Work packages produce deliverables. These may be results of any kind; e.g., reports, papers,

services, software, physical products, etc., or intangible results such as organizational change. A

deliverable may also be the implementation of (a part of) an architecture.

Figure 108: Deliverable Notation

Often, deliverables are contractually specified and in turn formally reviewed, agreed, and signed

off by the stakeholders as is, for example, prescribed by the TOGAF framework [4].

13.2.3 Implementation Event

An implementation event represents a state change related to implementation or migration.

Work packages may be triggered or interrupted by an implementation event. Also, work

packages may raise events that trigger other behavior. Unlike a work package, an event is

instantaneous: it does not have duration.

An implementation event may have a time attribute that denotes the moment or moments at

which the event happens. For example, this can be used to model project schedules and

milestones; e.g., an event that triggers a work package, an event that denotes its completion

(with a triggering relationship from the work package to the event), or an event that denotes a

lifecycle change of a deliverable (via an access relationship to that deliverable).

Implementation events access deliverables to fulfill project objectives. For example, in a project

to deliver a completely new application along with the technology needed to host it, an

implementation event “release to production” could access the deliverables “final build”,

“staging environment”, and “production environment”.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 107

An implementation event may trigger or be triggered (raised) by a work package or a plateau.

An implementation event may access a deliverable and may be composed of other

implementation events.

An implementation event may be associated with any core element; e.g., to indicate a lifecycle

state change. The name of an implementation event should preferably be a verb in the perfect

tense; e.g., “project initiation phase completed”.

Figure 109: Implementation Event Notation

13.2.4 Plateau

A plateau represents a relatively stable state of the architecture that exists during a limited period

of time.

An important premise in the TOGAF framework is that the various architectures are described

for different stages in time. In each of the Phases B, C, and D of the ADM, a Baseline

Architecture and Target Architecture are created, describing the current situation and the desired

future situation. In Phase E (Opportunities and Solutions), so-called Transition Architectures are

defined, showing the enterprise at incremental states reflecting periods of transition between the

Baseline and Target Architectures. Transition Architectures are used to allow for individual

work packages and projects to be grouped into managed portfolios and programs, illustrating the

business value at each stage.

In order to support this, the plateau element is defined.

Figure 110: Plateau Notation

13.2.5 Gap

A gap represents a statement of difference between two plateaus.

The gap element is associated with two plateaus (e.g., Baseline and Target Architectures, or two

consecutive Transition Architectures) and represents the differences between these plateaus.

In the TOGAF framework [4], a gap is an important outcome of a gap analysis in Phases B, C,

and D of the ADM process, and forms an important input for the subsequent implementation and

migration planning.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

108 The Open Group Standard (2019)

Figure 111: Gap Notation

13.2.6 Example

The “Next Generation Services Program” work package is composed of three other work

packages. An implementation event “Program Approved” triggers the first work package,

“Architecture And Planning”, which triggers the work package “Application Services Layer

Development”, which triggers the work package “Business Services Development”, which

triggers the implementation event “Program Completed”. The “Program Approved”

implementation event also provides a deliverable “Program Brief”, as input for the first work

package. Work package “Architecture And Planning” realizes three deliverables: “Business

Plan”, “Architecture”, and “Roadmap” (which is accessed by the “Application Services Layer

Development” work package), which collectively realize the plateau “Strategic Plan Complete”.

This plateau follows the initial plateau “Baseline”, filling the gap “Knowledge Of How To

Address Customer Needs”. Similarly, the other work packages realize other deliverables that

realize the subsequent plateaus.

Example 35: Implementation and Migration Elements

13.2.7 Summary of Implementation and Migration Elements

Table 10 gives an overview of the implementation and migration elements, with their

definitions.

Table 10: Implementation and Migration Elements

Element Definition Notation

Work package Represents a series of actions

identified and designed to achieve

specific results within specified time

and resource constraints.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 109

Element Definition Notation

Deliverable Represents a precisely-defined result

of a work package.

Implementation

event

Represents a state change related to

implementation or migration.

Plateau Represents a relatively stable state of

the architecture that exists during a

limited period of time.

Gap Represents a statement of difference

between two plateaus.

13.3 Relationships

The implementation and migration elements use the standard ArchiMate relationships.

13.4 Relationships with Other Aspects and Layers

Figure 112 shows how the implementation and migration elements can be related to the

ArchiMate core elements.

Figure 112: Relationships of Implementation and Migration Elements with Core Elements

A business internal active structure element may be assigned to a work package.

A plateau is linked to an architecture that is valid for a certain time span. To indicate which parts

of the architecture belong to a certain plateau, a plateau may aggregate or compose any of the

concepts of the ArchiMate core language. Realization from a plateau to part of the architecture is

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

110 The Open Group Standard (2019)

also permitted. For example, a capability may be realized by a plateau, signifying that a certain

capability increment is valid only during the time span of that plateau.

A gap is associated with the core concepts that are unique to one of the plateaus linked by the

gap; i.e., the core concepts that make up the difference between these plateaus.

A deliverable may realize, among others, the implementation of an architecture or a part of an

architecture. Therefore, any of the concepts of the ArchiMate core language may be linked to a

deliverable by means of a realization relationship.

Like most of the core language concepts, a composite element may aggregate a work package or

deliverable.

Weaker relationships may also be defined. For example, the association relationship may be

used to show that parts of the architecture are affected in some way by certain work packages.

Strictly speaking, the relationships between the implementation and migration elements and the

motivation elements are indirect relationships; e.g., a deliverable realizes a requirement or goal

through the realization of an ArchiMate core element (e.g., an application component, business

process, or service). However, it is still useful to make these relationships explicit, to show

directly that a deliverable is needed to realize certain requirements and goals.

Also, motivation elements can be related to a certain plateau; e.g., certain requirements may only

be applicable to the Target Architecture, while others may apply to a certain Transition

Architecture. Similarly, plateaus can be used for capability-based planning. This can be modeled

by means of the aggregation or composition relationships.

Figure 113 summarizes the relationships between implementation and migration elements and

motivation elements. Goals, outcomes, capabilities, and requirements can be aggregated or

composed in plateaus. Requirements and capabilities can be realized by deliverables. Since

outcomes and goals are realized by capabilities and requirements, they can of course be realized

indirectly by deliverables as well.

Figure 113: Relationships of Implementation and Migration Elements with Motivation Elements

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 111

14 Stakeholders, Architecture Views, and Viewpoints

14.1 Introduction

Establishing and maintaining a coherent Enterprise Architecture is clearly a complex task,

because it involves many different people with differing backgrounds using various notations. In

order to get a handle on this complexity, researchers have initially focused on the definition of

architectural frameworks for classifying and positioning the various architectural descriptions

with respect to each other (e.g., the Zachman framework [5], [8]).

Architecture frameworks provide general guidance to deliver Architecture Descriptions along

with a process. The ArchiMate language, as a modeling notation, provides a detailed insight into

the structure and coherence of different architectures, so its use complements and supports

architecture frameworks.

The ArchiMate language provides a flexible approach in which architects and other stakeholders

can use their own views on the Enterprise Architecture. In this approach, architecture views are

specified by architecture viewpoints. Architecture viewpoints define abstractions on the set of

models representing the Enterprise Architecture, each aimed at a particular type of stakeholder

and addressing a particular set of concerns. Viewpoints can be used to view certain aspects in

isolation, and to relate two or more aspects.

In the domain of Enterprise Architecture, the TOGAF framework describes a taxonomy of

architecture views for different categories of stakeholders. In addition to this description of

views, the TOGAF framework also provides guidelines for the development and use of

architecture viewpoints and views in Enterprise Architecture models.

The architecture viewpoints and views proposed by any of the above-mentioned frameworks

should not be considered in isolation: views are inter-related and, often, it is exactly a

combination of views together with their underlying inter-dependency relationships that is the

best way to describe and communicate a piece of architecture. It should, however, be noted that

viewpoints and views have a limiting character. They are eventually a restriction of the whole

system (and architecture) to a partial number of aspects – a view is just a partial incomplete

depiction of the system.

14.2 Stakeholders and Concerns

This chapter introduces a method for using the ArchiMate language to systematically address

stakeholder concerns, the viewpoint mechanism. This viewpoint mechanism conforms to the

ISO/IEC 42010 standard [14], which provides a model for Architecture Description.

Stakeholders, concerns, viewpoints, and views are important elements in this model, as depicted

in Figure 114.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

112 The Open Group Standard (2019)

Figure 114: Conceptual Model of an Architecture Description (from [14])

The ArchiMate language with the viewpoint mechanism described in Section 14.4 assists and

guides the architect in definition and classification of governing viewpoints. The architect will

use this mechanism in his work to construct and design views for stakeholder communication.

14.3 Architecture Views and Viewpoints

Architecture views are an ideal mechanism to purposefully convey information about

architecture areas. In general, a view is defined as a part of an Architecture Description that

addresses a set of related concerns and is tailored for specific stakeholders. A view is specified

by means of an architecture viewpoint, which prescribes the concepts, models, analysis

techniques, and visualizations that are provided by the view. Simply put, a view is what you see,

and a viewpoint is where you are looking from.

An Architecture Description includes one or more architecture views. An architecture view (or

simply “view”) addresses one or more of the concerns held by a stakeholder of the system.

An architecture view expresses the architecture of the system of interest in accordance with an

architecture viewpoint (or simply “viewpoint”). There are two aspects to a viewpoint: the

concerns it frames for the stakeholders and the conventions it establishes on views.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 113

An architecture viewpoint frames one or more concerns. A concern can be framed by more than

one viewpoint.

A view is governed by its viewpoint: the viewpoint establishes the conventions for constructing,

interpreting, and analyzing the view to address concerns framed by that viewpoint. Viewpoint

conventions can include languages, notations, model kinds, design rules and/or modeling

methods, analysis techniques, and other operations on views.

Architecture viewpoints are a means to focus on particular aspects and layers of the architecture.

These aspects and layers are determined by the concerns of a stakeholder with whom

communication takes place. What should and should not be visible from a specific viewpoint is

therefore entirely dependent on the argumentation with respect to a stakeholder’s concerns.

Viewpoints are designed for the purpose of communicating certain aspects and layers of an

architecture. The communication enabled by a viewpoint can be strictly informative, but in

general is bi-directional. The architect informs stakeholders, and stakeholders give their

feedback (critique or consent) on the presented aspects and layers. What is and what is not

shown in an architecture view depends on the scope of the viewpoint and on what is relevant to

the concerns of the stakeholder. Ideally, these are the same; i.e., the viewpoint is designed with

specific concerns of a stakeholder in mind. Relevance to a stakeholder’s concern, therefore, is

the selection criterion that is used to determine which elements and relationships are to appear in

a view.

14.4 Viewpoint Mechanism

An architect is confronted with many different types of stakeholders and concerns. To help in

selecting the right viewpoints for the task at hand, we introduce a framework for the definition

and classification of viewpoints: the viewpoint mechanism. The framework is based on two

dimensions: purpose and content. Figure 115 shows how the viewpoint mechanism is used to

create views addressing stakeholder concerns.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

114 The Open Group Standard (2019)

Figure 115: Framing Stakeholder Concerns using the Viewpoint Mechanism

The architect communicates with the stakeholder to understand and document their concerns.

The viewpoint mechanism is used to identify purpose and content and to help define and classify

the viewpoint. The viewpoint governs the construction and design of the view. The view is a

description of the architecture addressing stakeholder concerns and is governed by the

viewpoint.

Creating an ArchiMate viewpoint consists of two steps:

1. Selecting a subset of relevant concepts (elements and relationships) from the ArchiMate

metamodel, based on the information that is needed to address the stakeholder’s concerns.

2. Defining a representation to depict these concepts in a way that is understood by the

stakeholders. This can be a diagram that uses standard or customized ArchiMate notation,

a catalog of elements, a matrix showing the relationships between two groups of elements,

or an entirely different visualization.

Applying this viewpoint to an architecture model means that those parts of the architecture are

selected that match the chosen set of concepts (Step 1) and are depicted in the manner prescribed

by Step 2.

14.4.1 Defining and Classifying Viewpoints

To help define and classify viewpoints based on a repeatable structure, the ArchiMate language

assists the architect in selecting purpose and content relevant for the stakeholder’s concerns.

The purpose dimension is supported by the following three categories:

 Designing: design viewpoints support architects and designers in the design process from

initial sketch to detailed design

Architecture

View

ArchiMate Metamodel

Elements Relationships

Stakeholder Concerns

Architecture

Viewpoint

Architect

Viewpoint

Mechanism

Stakeholder

Communication

Architecture
Description

Aspects Layers

Purpose

Deciding

Designing

Informing

Content

Overview

Details

Coherence

Stakeholder

Communication

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 115

Typically, design viewpoints consist of diagrams like those used in, for example, UML.

 Deciding: decision support viewpoints assist managers in the process of decision-making

by offering insight into cross-domain architecture relationships, typically through

projections and intersections of underlying models, but also by means of analytical

techniques

Typical examples are cross-reference tables, landscape maps, lists, and reports.

 Informing: informing viewpoints help to inform any stakeholder about the Enterprise

Architecture, in order to achieve understanding, obtain commitment, and convince

adversaries

Typical examples are illustrations, animations, cartoons, flyers, etc.

The content dimension uses the ArchiMate Core Framework to select relevant aspects and

layers. This is supported by the following three categories:

 Details: views on the detailed level typically consider one layer and one aspect from the

ArchiMate Core Framework

Typical stakeholders are a software engineer responsible for design and implementation of

a software component or a process owner responsible for effective and efficient process

execution.

 Coherence: at the coherence abstraction level, multiple layers or multiple aspects are

spanned

Extending the view to more than one layer or aspect enables the stakeholder to focus on

architecture relationships like process-uses-system (multiple layer) or application-uses-

object (multiple aspect). Typical stakeholders are operational managers responsible for a

collection of IT services or business processes.

 Overview: the overview abstraction level addresses both multiple layers and multiple

aspects

Typically, such overviews are addressed to Enterprise Architects and decision-makers,

such as CEOs and CIOs.

14.4.2 Creating the View

With a governing viewpoint, the architect can create and design a view. The view contains

elements and relationships (concepts) from the ArchiMate metamodel. The architect can design

and create an appropriate representation for these elements and relationships, suitable for the

stakeholder(s) and concern(s) being framed. The architect may use the profile mechanism

described in Section 15.1 to create representations based on attributes of elements and

relationships; for example, to create color-coded heat maps. The view does not have to be visual

or graphical in nature.

14.5 Example Viewpoints

See Appendix C for a set of example viewpoints.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

116 The Open Group Standard (2019)

15 Language Customization Mechanisms

Every specific purpose and usage of an architecture modeling language brings about its own

specific demands on the language. Yet, it should be possible to use a language for only a limited,

though non-specific, modeling purpose. Therefore, the ArchiMate language, specified in the

ArchiMate metamodel and described in Chapter 4 to Chapter 13, contains only the basic

elements and relationships that serve general Enterprise Architecture modeling purposes.

However, the language should also be able to facilitate, through customization
2
 mechanisms,

specialized, or domain-specific purposes, such as:

 Support for specific types of model analysis

 Support for the communication of architectures

 Capture the specifics of a certain application domain (e.g., the financial sector)

The argument behind this statement is to provide a means to allow customization of the language

that is tailored towards such specific domains or applications, without burdening the language

with a lot of additional concepts and notations which most people would barely use. The

remainder of this chapter is devoted to the customization mechanisms that are part of the

ArchiMate language, and to a series of illustrative examples of such customizations.

15.1 Adding Attributes to ArchiMate Elements and Relationships

As stated earlier in this standard, the ArchiMate language contains only the elements and

relationships that are necessary for general architecture modeling. However, users might want to

be able to, for example, perform model-based performance or cost calculations, or to attach

supplementary information (textual, numerical, etc.) to the model elements and relationships.

Every concept in an ArchiMate model can have attributes attached to it. ArchiMate elements and

relationships can be enriched in a generic way with supplementary information by means of a

“profiling” specialization mechanism (see also [9]).

A profile is a data structure which can be defined separately from the ArchiMate language but

can be dynamically coupled with elements or relationships; i.e., the user of the language is free

to decide whether and when the assignment of a profile to a model element is necessary. Profiles

are specified as sets of typed attributes. Each of these attributes may have a default value that

can be changed by the user.

Two types of profiles can be distinguished:

 Pre-defined profiles: these are profiles that have a predefined attribute structure and can

be implemented beforehand in any tool supporting the ArchiMate language

2 Note that this chapter was called Language Extension Mechanisms in previous versions of this standard. Since these customization

mechanisms do not actually extend the language, it was decided to rename this chapter and these mechanisms.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 117

Examples of such profiles are sets of attributes for ArchiMate elements and relationships

that have to be specified in order to execute common types of analysis.

 User-defined profiles: through a profile definition language, the user is able to define new

profiles, thus extending the definition of ArchiMate elements or relationships with

supplementary attribute sets

Example

Table 11 shows possible profiles with input attributes needed for certain types of cost and

performance analysis of architecture models [13]. Each “serving” relationship may have a

weight (indicating the average number of uses); each (business, application, or technology)

“service” may have fixed and variable costs and an (average) service time; and each structure

element (e.g., business role, business actor, application component, device) may have fixed and

variable costs and a capacity.

Table 11: Profile Example

“Serving” Profile “Service” Profile “Structure Element” Profile

Attribute Type Attribute Type Attribute Type

Weight Real Fixed cost Currency Fixed cost Currency

 Variable cost Currency Variable cost Currency

 Service time Time Capacity Integer

15.2 Specialization of Elements and Relationships

Specialization is a simple and powerful way to define new elements or relationships based on the

existing ones. Specialized elements inherit the properties of their generalized elements

(including the relationships that are allowed for the element), but some of the relationships that

apply to the specialized element need not be allowed for the generalized element. Also, new

graphical notation could be introduced for a specialized concept, but preferably with a

resemblance to the notation of the generalized concept; e.g., by adding an icon or other graphical

marker, or changing the existing icon. A specialized element or relationship strongly resembles a

stereotype as it is used in UML. The stereotype notation with angled brackets may also be used

to denote a specialized concept. Finally, for a specialized concept, certain attributes may be

predefined, as described in the previous section.

Specialization of relationships is also allowed. Similar to specialization of elements, a

specialized relationship inherits all properties of its “parent” relationship, with possible

additional restrictions. For example, two specializations of the assignment relationship may be

used to model responsibility versus accountability. Another example is a specialization of the

flow relationship to model material flow in a supply chain.

Specialization of elements and relationships provides extra flexibility, as it allows organizations

or individual users to customize the language to their own preferences and needs, while the

underlying precise definition of the concepts is preserved. This also implies that analysis and

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

118 The Open Group Standard (2019)

visualization techniques developed for the ArchiMate language still apply when the specialized

elements or relationships are used.

Specialization of concepts is done by using the profile mechanism described in Section 15.1. The

name of the profile is the name of the specialization, and it may have other attributes if relevant

to the specialization. The specialized concept is modeled by assigning such a profile to the

generalized concept.

The profile may also define a specific notation to denote the specialization. The default is the

guillemet notation of UML for stereotypes (“«specialization name»”). Other options include

specific icons, colors, fonts, or symbols. Note that multiple specialization profiles may be

assigned to the same generalized concept; in the default notation, these are shown as a comma-

separated list (“«specialization 1, specialization 2»”).

15.2.1 Examples of Specializations of Business Layer Elements (Informative)

Table 12 shows examples of specializations of Business Layer concepts.

Table 12: Example Specializations of Business Layer Elements

Parent Concept Specialized Concept Description

Business Actor Individual A natural person capable of performing behavior in the

context of an enterprise.

Organizational Unit Any named subdivision of an organization (e.g., a

department).

Organization An entity such as an institution, corporation, or association

that has a collective goal and is linked to an external

environment.

Threat Agent Anything (e.g., an object, substance, individual, or group)

that is capable of acting against an asset in a manner that can

result in harm. This can be intentional; i.e., an attacker, but

also unintentional; e.g., a well-intentioned, but inept,

computer operator who trashes a daily batch job by typing

the wrong command.

Business Service Business Decision A conclusion that a business arrives at through business logic

and which the business is interested in managing.

Business

Collaboration

Social Network A social structure made up of social actors (individuals or

organizations) and the connections between these actors.

Business Process Business Activity Atomic internal behavior element (at the considered

abstraction level) that will not be decomposed any further.

Business Event Threat Event

(Risk & Security

Overlay)

Event with the potential to adversely impact an asset. An

attack is a specific type of threat event that is the result of an

intentional malicious activity of an attacker, which is a

specific type of threat agent.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 119

Parent Concept Specialized Concept Description

Loss Event

(Risk & Security

Overlay)

Any circumstance that causes a loss or damage to an asset.

15.2.2 Examples of Specializations of Application Layer Elements (Informative)

Table 13 shows examples of specializations of Application Layer elements.

Table 13: Example Specializations of Application Layer Elements

Parent Concept Specialized Concept Description

Application

Component

Logical Application

Component

An encapsulation of application functionality that is

independent of a particular implementation.

Physical Application

Component

An application, application module, application service, or

other deployable component of functionality.

Application

Interface

Application-to-

Application Interface

Interface that is used to communicate between application

components.

Graphical User

Interface

On-screen interface (GUI) with which a human user can

interact with an application component.

15.2.3 Examples of Specializations of Technology Layer Elements (Informative)

Table 14 shows examples of specializations of Technology Layer elements.

Table 14: Example Specializations of Technology Layer Elements

Parent Concept Specialized Concept Description

Node Logical Technology

Component

An encapsulation of technology infrastructure that is

independent of a particular product. A class of technology

product.

Physical Technology

Component

A specific technology infrastructure product or technology

infrastructure product instance.

Device Mobile Device A portable device such as a smartphone or tablet.

Embedded Device A computing device that is part of a piece of equipment.

Network Wi-Fi Network Wireless Local Area Network (WLAN).

Wide Area Network Long-range data communication network.

Technology

Service

Processing Service Service used for processing data by a node.

Storage Service Service used for storing data on a node, typically offered by a

database or file system.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

120 The Open Group Standard (2019)

Parent Concept Specialized Concept Description

Communication

Service

Service used for transporting information (e.g., voice, data)

between nodes.

15.2.4 Examples of Specializations of Physical Elements (Informative)

Table 15 shows examples of specializations of physical elements.

Table 15: Example Specializations of Physical Elements

Parent Concept Specialized Concept Description

Equipment Vehicle A movable piece of equipment used for transportation

purposes.

Train A vehicle intended for use on a rail network.

Facility Factory A large-scale physical resource used for receipt, temporary

storage, and redistribution of goods.

Material Ore Rock containing minerals, raw material in mining, and

related industries.

Building Material Material used in building and construction such as concrete,

bricks and mortar, beams and girders, etc.

Fuel Material used as an energy source in, for example, production

or transportation.

Distribution

Network

Rail Network Network for rail transport, on which trains are used.

Energy Grid Network for distribution of energy, such as an electrical

power grid or a gas distribution network.

15.2.5 Examples of Specializations of Motivation Elements (Informative)

Table 16 shows examples of specializations of motivation elements.

Table 16: Example Specializations of Motivation Elements

Parent Concept Specialized Concept Description

Driver Metric The extent, quantity, amount, or degree of something, as

determined by measurement or calculation.

Assessment Vulnerability

(Risk & Security

Overlay)

The probability that an asset will be unable to resist the

actions of a threat agent.

Risk

(Risk & Security

Overlay)

The probable frequency and probable magnitude of future

loss.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 121

Parent Concept Specialized Concept Description

Goal Business Objective A time-bound milestone for an organization used to

demonstrate progress towards a goal.

Control Objective

(Risk & Security

Overlay)

Aim or purpose of specified control measures which address

the risks that these control measures are intended to mitigate.

Principle Business Policy A directive that is not directly enforceable, whose purpose is

to govern or guide the enterprise.

Requirement Control Measure

(Risk & Security

Overlay)

An action, device, procedure, or technique that reduces a

threat, a vulnerability, or an attack by eliminating or

preventing it, by minimizing the harm it can cause, or by

discovering and reporting it so that corrective action can be

taken.

Business Rule An enforceable directive intended to govern, guide, or

influence business behavior.

Example 36 illustrates the use of specializations of Business Layer and motivation elements to

model the results of a risk analysis, and the control objectives and required control measures to

mitigate the identified risks. This example uses the UML stereotype notation with angled

brackets to denote specialized elements.

Example 36: Specializations of Business Layer and Motivation Elements

15.2.6 Examples of Specializations of Strategy Elements (Informative)

Table 17 shows examples of specializations of strategy elements.

Table 17: Example Specializations of Strategy Elements

Parent Concept Specialized Concept Description

Capability Capability Increment A specialization of a capability realized by a specific plateau

or a state in the architecture that represents a stage in the

evolution of that capability.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

122 The Open Group Standard (2019)

Parent Concept Specialized Concept Description

Course of Action Strategy A high-level, broad-scope approach to achieve a long-term

goal.

Tactic A narrow-scope approach to achieve a short-term goal, used

to detail a strategy.

15.2.7 Examples of Specializations of Implementation and Migration Elements
(Informative)

Table 18 shows examples of specializations of implementation and migration elements.

Table 18: Example Specializations of Implementation and Migration Elements

Parent Concept Specialized Concept Description

Work Package Program A coordinated set of projects that deliver business benefits to

the organization.

Project A time- and resource-bound activity that delivers specific

business benefits to an organization.

15.2.8 Examples of Specializations of Composite Elements (Informative)

Table 19 shows examples of specializations of compound elements. In addition to the

specialization of single model elements, grouping can also be used to define specific compound

elements.

Table 19: Example Specializations of Composite Elements

Parent Concept Specialized Concept Description

Grouping Risk Domain

(Risk & Security

Overlay)

A domain consisting of entities that share one or more

characteristics relevant to risk management or security. A

risk domain is also a context or set of conditions that affects

a risk exposure level.

Grouping of

Application

Component,

Application

Function, and Data

Object

Data Store A repository for persistently storing and managing

collections of data.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 123

15.2.9 Examples of Specializations of Relationships (Informative)

Table 20 shows examples of specializations of relationships.

Table 20: Example Specializations of Relationships

Parent Concept Specialized Concept Description

Flow Money Flow A flow of money between behavior elements.

Assignment Responsibilities

Assignment

Assignment from a business actor to a business role.

Behavior Assignment Assignment from an active structure to a behavior element.

Or-junction Or-join A junction with two or more incoming triggering and one

outgoing triggering relationship, representing that at least

one of the incoming relationships must be triggered to

trigger the outgoing one.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

124 The Open Group Standard (2019)

A Summary of Language Notation

This appendix describes the default iconography of the ArchiMate language. Modelers can

choose to use a different iconography on any diagram they desire, if it will help communicate

better with the stakeholder for which the viewpoint was designed. It is, however, recommended

to use the default iconography so that teams using the ArchiMate language have a collective

understanding of the view being developed. Conforming tools shall at least support these

notations.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 125

A.1 Core Elements

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

126 The Open Group Standard (2019)

A.2 Motivation, Strategy, Implementation and Migration Elements

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 127

A.3 Relationships

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

128 The Open Group Standard (2019)

B Relationships (Normative)

This appendix details the normative requirements for relationships between elements of the

ArchiMate modeling language.

B.1 Specification of Derivation Rules

The following sections specify the formal rules for deriving relationships. The input

relationships used for derivation must be allowed by the tables in this appendix. The resulting

relationship will then always be allowed by definition and is listed in these tables as well. Note

that these derivation rules do not work on relationships with grouping, or between core elements

and other elements such as motivation, strategy, or implementation and migration elements, with

the exception of the realization and influence relationships. This appendix states in more detail

the restrictions that were applied to the use of the derivation rules to arrive at the relationship

tables. Applying these rules and restrictions together results in the tables in this appendix, which

contain all allowed relationships in the language.

We distinguish between two types of derivations: those that are certainly true in any model

where these rules apply, and those that are potentially true but uncertain, depending on the

specifics of the model concerned.

Notation of Derivation Rules

In the description of the derivation rules a shorthand is used to describe relations: p(a,b):R is

used to describe the relationship with name p that has concept a as source, concept b as target,

and R as its relationship type.

The source and target concepts may be of any type. The relationship type can be restricted by the

definition.

By convention, concepts are named a, b, and c in order of appearance, relationships are named p,

q, and r in order of appearance, and relationship types are named S, T, and U in order of

appearance.

B.2 Derivation Rules for Valid Relationships

This section states the derivation rules for derivations that are valid in any model where these

rules apply.

B.2.1 Valid Derivations for Specialization Relationships

DR 1: Transitivity of Specialization

If two relationships p(a,b):S and q(b,c):S exist, with S being Specialization, then a relationship

r(a,c):S can be derived.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 129

Example 37: Transitivity of Specialization

B.2.2 Valid Derivations for Structural Relationships

The structural relationships can be ordered by “strength”:

 Realization (weakest)

 Assignment

 Aggregation

 Composition (strongest)

Part of the language definition is an abstraction rule that states that two structural relationships

that join at an intermediate element under specific conditions can be combined and replaced by

the weaker of the two.

DR 2: Derivation Between Structural Relationships

If two relationships p(a,b):S and q(b,c):T exist, with S and T being structural relationships, then a

relationship r(a,c):U can be derived, with U being the weakest of S and T.

Example 38: Derivation of Structural Relationships

Informally, this means that if two structural relationship are “in line” (the target of one relation

joins at the source of the other relation) they can be replaced by the weakest of the two.

Transitively applying this property allows us to replace a “chain” of structural relationships that

are in line (with intermediate model elements) by the weakest structural relationship in the chain.

An example is shown in Example 39: assume that the goal is to omit the functions, sub-

functions, and services from the model. In this case, an indirect realization relationship (the

relationship labeled “Derived Relationship” (thick arrow on the right) can be derived from

“Financial Application” to the “Payment Service” (from the chain assignment – composition –

realization).

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

130 The Open Group Standard (2019)

Example 39: Derivation from a Chain of Structural Relationships

B.2.3 Valid Derivations for Dependency Relationships

Part of the language definition is an abstraction rule that states that a structural relationship and a

dependency relationship that join at an intermediate element under certain conditions can be

combined and replaced by the dependency relationship. This rule is split into two parts for both

the source and target side of the dependency.

DR 3: Derivation Between Structural and Dependency Relationships

If two relationships p(a,b):S and q(b,c):T exist, with S being a structural relationship and T being

a dependency relationship, then a relationship r(a,c):T can be derived.

Example 40: Derivation from a Dependency and a Structural Relationship in Line

DR 4: Derivation Between Opposing Structural and Dependency Relationships

If two relationships p(a,b):S and q(c,b):T exist, with S being a structural relationship and T being

a dependency relationship, then a relationship r(c,a):T can be derived.

Example 41: Derivation from a Dependency and a Structural Relationship in the Opposite Direction

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 131

These rules may be combined with the derivation rule for structural relations (DR2), allowing to

replace a “chain” of structural relationships and a dependency relationship (with intermediate

model elements) by the dependency relationship in the chain, given that the chain does satisfy

the restrictions for structural and dependency relationships. Informally, this means that the begin

and/or endpoint of a dependency relationship can be transferred “backwards” in a chain of

elements connected by structural relationships.

B.2.4 Valid Derivations for Dynamic Relationships

Part of the language definition is an abstraction rule that states that a structural relationship and a

dynamic relationship that join at an intermediate element under certain conditions can be

combined and replaced by the dynamic relationship. This rule is split into a generic rule and

rules specific for flow and triggering.

For the two dynamic relationships, the following rules apply.

DR 5: Derivation Between Structural and Dynamic Relationships

If two relationships p(a,b):S and q(b,c):T exist, with S being a structural relationship and T being

a dynamic relationship, then a relationship r(a,c):T can be derived.

Example 42: Derivation from a Dynamic and a Structural Relationship in Line

DR 6: Derivation Between Structural and Flow Relationships

If two relationships p(a,b):S and q(c,b):T exist, with S being a structural relationship and T being

Flow, then a relationship r(c,a):T can be derived.

Example 43: Derivation from a Flow and a Structural Relationship in the Opposite Direction

DR 7: Derivation Between Structural and Triggering Relationships

If two relationships p(a,b):S and q(b,c):T exist, with S being Triggering and T being a structural

relationship, then a relationships r(a,c):S can be derived.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

132 The Open Group Standard (2019)

Example 44: Derivation from a Triggering and a Structural Relationship in Line

These rules can be applied repeatedly. Informally, this means that the begin and/or endpoint of a

flow relationship can be transferred “backwards” in a chain of elements connected by structural

relationships. Example 45 shows two of the possible flow relationships that can be derived with

these rules, given a flow relationship between the two services.

Example 45: Derivation from Dynamic Relationships

Moreover, triggering relationships are transitive, as expressed in the next rule.

DR 8: Derivation Between Triggering Relationships

If two relationships p(a,b):S and q(b,c):S exist, with S being Triggering, then a relationship

r(a,c):S can be derived.

Example 46: Derivation from Triggering Relationships

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 133

This rule may be combined with the rules for deriving dynamic relations and structural

relationships, thus allowing discovery of triggering relations. Example 47 shows how the “Sales

Department” is assigned a business process “Selling” that triggers a business process

“Invoicing”, which is composed of the business processes “Billing” and “Payment”. “Invoicing”

in turn triggers the business process “Shipping” that is assigned to the “Shipping Department”.

The derivation rules allow that the “Sales Department” triggers the “Shipping” business process,

but also the business process “Billing”.

Example 47: Derivation from Triggering and Structural Relationships

B.3 Derivation Rules for Potential Relationships

The derivation rules defined so far lead to relationships that are valid with high certainty. If a

model is well designed and describes a stable state of the enterprise, these derived relationships

can be trusted.

This section describes derivation rules for relationships with lower certainty. They might be

relevant but may also be wrong, depending on the specifics of the model. It is up to the modeler

to decide on this.

The derivation rules for potential relationships are used to enrich the metamodel with

relationships that otherwise would not be allowed and can be used to discover relationships in a

model that otherwise might not show.

Example

Example 48 shows a potential derivation in which some relationships are valuable and some are

not. In this example, an architect first modeled an application component called “Suite” that uses

two infrastructure services called “Website Hosting” and “Database Hosting”. Later, the

application component “Suite” was detailed by adding two composed application components

“Front-end” and “Back-end”. The architect in this case did not reconsider the serving relations.

Potential derivation rule PDR 5 allows the red and grey relationships. In this case, the architect

determines that only the red relationships are valuable.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

134 The Open Group Standard (2019)

Example 48: Examples of Potential Derivation

B.3.1 Potential Derivation for Specialization Relationships

Part of the language definition is a rule that states that every relation from or to a generic

element is inherited by the specialized element. This leads to a number of potential derivations.

The first two rules apply in the case where the target of a specialization relationship is the source

or target of any other relationship. In this case, the source of the specialization could have the

same relationship.

PDR 1: Derivation with Specialization and Other Relationships

If two relationships p(a,b):S and q(b,c):T exist, with S being Specialization and T being a

structural, dependency, or dynamic relationship, then a relationship r(a,c):T might be derived.

Example 49: Potential Derivation from a Specialization and Another Relationship in Line

PDR 2: Derivation with Specialization and Other Relationships

If two relationships p(a,b):S and q(c,b):T exist, with S being Specialization and T being a

structural, dependency, or dynamic relationship, then a relationship r(c,a):T might be derived.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 135

Example 50: Potential Derivation from a Specialization and Another Relationship in the Opposite

Direction

The next two rules apply in the case where the target of a specialization relationship is joining

the source or target of any other relationship. In this case, the source of the specialization could

have the same dependency.

PDR 3: Potential Derivation Between Specialization and Any Other Relationship

If two relationships p(a,b):S and q(a,c):T exist, with S being Specialization and T being a

structural, dependency, or dynamic relationship, then a relation r(b,c):T might be derivable.

Example 51: Potential Derivation from Another Relationship and a Specialization in Line

PDR 4: Potential Derivation Between Specialization and Any Other Relationship

If two relationships p(a,b):S and q(c,a):T exist, with S being Specialization and T being a

structural, dependency, or dynamic relationship, then a relationship r(c,b):T might be derivable.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

136 The Open Group Standard (2019)

Example 52: Potential Derivation from Another Relationship and a Specialization in Line

The potential relationships derived with the rules from this section may vary a lot in likelihood,

depending on the direction of the derivation (from generalized to specialized element or vice

versa), the type of relationship, and the specific interpretation of the relationship. Also, a chain

of multiple potential derivations usually leads to a lower probability.

Consider a model with a “Project Team” assigned to a “Project”, and an “IT Project Team”, as a

specialization of “Project Team”, assigned to an I”T Project”, as a specialization of “Project”. A

“Project Team” aggregates a “Project Manager”, a “Project” accesses (reads) “Project Planning”,

and an “IT Project” accesses (writes) “Software Documentation” (Example 53).

Example 53: Specializations Used in Potential Derivations

 Composition or aggregation relationships often lead to derivations that are (almost) certain

when moving the source of the relationship to a specialized element (PDR 1), or the target

of the relationship to a generalized element (PDR 4)

In this example, “IT Project Team” aggregates “Project Manager” is a derived relationship

that is almost certain.

 For the assignments, this depends on the perspective: “IT Project Team” assigned to

“Project” (PDR 1) is probably true in the sense that the “IT Project Team” always

performs a “Project”, but uncertain in the sense that a “Project” is not always performed

by an “IT Project Team” (e.g., if it is a business project)

For “Project Team” assigned to “IT Project” (PDR 2), this is the other way around.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 137

 “IT Project” accesses (reads) “Project Planning” (PDR 1) is almost certainly a derived

relationship, while “Project” accesses (writes) “Software Documentation” (PDR 3) is only

valid for a subset of “Projects”

B.3.2 Potential Derivation for Structural and Dependency Relationships

The next two rules apply in the case where a structural and dependency relation are joining at the

source of the structural relation. In this case, the target of the structural relation could have the

same dependency.

PDR 5: Potential Derivation Between Structural and Dependency Relationships

If two relationships p(a,b):S and q(c,a):T exist, with S being a structural relationship and T being

a dependency relationship, then a relationship r(c,b):T might be derivable.

Example 54: Potential Derivation from a Dependency and a Structural Relationship in Line

PDR 6: Potential Derivation Between Structural and Dependency Relationships

If two relationships p(a,b):S and q(a,c):T exist, with S being a structural relationship and T being

a dependency relationship, then a relationship r(b,c):T might be derivable.

Example 55: Potential Derivation from a Dependency and a Structural Relationship in the Opposite

Direction

B.3.3 Potential Derivation for Dependency Relationships

The next rule applies in the case where two dependency relationships are joining at an

intermediate element. In this case, the two relations could be replaced by one, being the weaker

of the two.

The dependency relationships are ordered by “strength”:

 Association (weakest)

 Influence

 Access

 Serving (strongest)

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

138 The Open Group Standard (2019)

PDR 7: Potential Derivation Between Dependency Relationships

If two relationships p(a,b):S and q(b,c):T exist, with S and T being a Dependency Relationship,

then a relationship r(a,c):U might be derivable, with U being the weakest of S and T.

Example 56: Potential Derivation from Two Dependency Relationships

B.3.4 Potential Derivation for Dynamic Relationships

The next rules apply in the case where a structural and dynamic relation are joining at an

intermediate element. In this case, the target of the structural relation could have the same

dependency.

PDR 8: Potential Derivation Between Structural and Dynamic Relationships

If two relationships p(a,b):S and q(b,c):T exist, with S being Flow and T being a structural

relationship, then a relation r(a,c):S might be derivable.

Example 57: Potential Derivation from a Dynamic and a Structural Relationship in Line

PDR 9: Potential Derivation Between Structural and Dynamic Relationships

If two relationships p(a,b):S and q(a,c):T exist, with S being a structural relationship and T being

a dynamic relationship, then a relationship r(b,c):T might be derivable.

Example 58: Potential Derivation from a Dynamic and a Structural Relationship in the Opposite

Direction

The next rule applies in the case where two flow relationships join at an intermediate element. In

this case, the flow relations could be replaced by one relation.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 139

PDR 10: Potential Derivation Between Flow Relationships

If two relationships p(a,b):S and q(b,c):S exist, with S being Flow, then a relationship r(a,c):S

might be derivable.

Example 59: Potential Derivation from Two Flow Relationships

PDR 11: Potential Derivation Between Triggering and Structural Relationships

If two relationships p(a,b):S and q(c,b):T exist, with S being a Triggering relationship and T

being a structural relationship, then a relation r(a,c):S might be derivable.

Example 60: Potential Derivation from a Triggering and Structural Relationships

B.4 Restrictions on Applying Derivation Rules

This section describes a number of restrictions that apply when using the derivation rules to infer

the set of allowed relationships. In this context, the following are called “domains”:

 Motivation (Chapter 6)

 Strategy (Chapter 7)

 Core, which includes the Business Layer (Chapter 8), Application Layer (Chapter 9),

Technology Layer (Chapter 10), physical elements (Chapter 11), and the location element

(Section 4.5.2)

 Implementation and migration (Chapter 13)

The restrictions below apply with respect to the relationships that can be derived:

 If a is an implementation and migration element, core element, or strategy element, and b

is a motivation element, only “realization” or “influence” can be derived from a to b; no

relationship can be derived from b to a

 If a is an implementation and migration element or a core element, and b is a strategy

element, only “realization” can be derived from a to b; no relationships can be derived

from b to a

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

140 The Open Group Standard (2019)

 If a is an implementation and migration element, and b is a core element, only

“realization” can be derived from a to b; no relationships can be derived from b to a

 If a is in domain A and b is in domain B (which may equal A), then a relationship cannot

be derived from a to b or from b to a through an intermediary c in a domain C that is

distinct from both A and B

The following rules apply to access relationships and passive structure elements:

 For an element a and element b, “access” from a to b can only be derived if b is a passive

structure element

 For an element a and element b, if b is a passive structure element then only “access” or

“assignment” can be derived from a to b

 For an element a and element b, if a is a passive structure element then only “realization”

or “influence” can be derived from a to b

And these general modeling rules must be observed:

 For two elements a and b, where b has a metamodel specialization to a (e.g., a is Node

and b is Facility), all relationships that are allowed from a to a are also allowed from a to

b, from b to a, and from b to b; also, given b and c, two different elements which have a

metamodel specialization to a (e.g., b is Facility and c is System Software), then all

relationships allowed from a to a are also allowed from b to c and from c to b

Notes:

 These restrictions only apply to derived relationships, not to relationships explicitly

defined in the metamodel diagrams, which are by definition allowed

 The location element counts as a core element in these derivations

 Figure 5, Figure 12, and Figure 18, which provide the generic structure of layers, are

intended as a template for these layers; the subtypes of these elements do not inherit all

possible relationships with other subtypes, only with those within their own layer, as

specified in the layer-specific metamodel fragments

 Product and plateau are composite elements, but can only aggregate or be composed of the

specific concepts depicted in their respective metamodel fragments Figure 68 and Figure

106

B.5 Relationship Tables

This section provides a set of tables with all allowed relationships. It is constructed from the

metamodel figures in Chapters 3 through 13 and the derivation rules for relationships outlined in

Section B.1.

The letters in the tables have the following meaning:

(a)ccess (c)omposition (f)low a(g)gregation ass(i)gnment

i(n)fluence ass(o)ciation (r)ealization (s)pecialization (t)riggering ser(v)ing

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 141

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

142 The Open Group Standard (2019)

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 143

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

144 The Open Group Standard (2019)

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 145

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

146 The Open Group Standard (2019)

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 147

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

148 The Open Group Standard (2019)

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 149

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

150 The Open Group Standard (2019)

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 151

B.6 Grouping, Plateau, and Relationships Between Relationships

For grouping, plateau, relationships, and relationship connectors, the following conditions hold:

 Grouping and location elements may have an aggregation or composition relationship to

any concept (element, relationships, or relationship connectors)

 A grouping element may be the source of any relationship with any element (provided that

the element is a possible target element for the relationship)

 A grouping element may be the target of any relationship with any element (provided that

the element is a possible source element for the relationship)

 A grouping element may have any relationship with another grouping element

 Any relationship may have an association relationship with any element

From →

↓ To Grouping

Plateau/

Location

Element other

than Grouping,

Plateau,

Location Relationship

Relationship

Connector

Grouping any cg + any** any** o afinortv*

Element

other than

Grouping

any* See metamodel. See metamodel. o afinortv*

Relationship cg + o cg + o o o

Relationship

Connector

afinortv afinortv** afinortv** o afinortv

* Provided that element is a possible target element of the relationship (see Section B.5).

** Provided that element is a possible source element of the relationship (see Section B.5).

(a)ccess (c)omposition (f)low a(g)gregation ass(i)gnment

i(n)fluence ass(o)ciation (r)ealization (s)pecialization (t)riggering ser(v)ing

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

152 The Open Group Standard (2019)

C Example Viewpoints

C.1 Basic Viewpoints in the ArchiMate Language

A viewpoint in the ArchiMate language is a selection of a relevant subset of the ArchiMate

elements and their relationships. This is the representation of that part of an architecture that is

expressed in different diagrams.

The most basic type of viewpoint is a simple selection of a relevant subset of the ArchiMate

concepts and the representation of that part of an architecture that is expressed in this selection,

geared towards the stakeholders that will use the resulting views.

The following are examples of stakeholders and concerns as a basis for the specification of

viewpoints:

 End user

For example, what are the consequences for their work and workplace?

 Architect

What is the consequence for the maintainability of a system, with respect to corrective,

preventive, and adaptive maintenance?

 Upper-level management

How can we ensure our policies are followed in the development and operation of

processes and systems? What is the impact of decisions (on personnel, finance, ICT, etc.)?

 Operational manager

Responsible for exploitation or maintenance; for example, what new technologies are

there to prepare for? Is there a need to adapt maintenance processes? What is the impact

of changes to existing applications? How secure are my systems?

 Project manager

Responsible for the development of new applications. What are the relevant domains and

their relationships? What is the dependence of business processes on the applications to be

built? What is their expected performance?

 Developer

What are the modifications with respect to the current situation that need to be done?

In each basic viewpoint, concepts from the three layers of Business, Application, and

Technology may be used. However, not every combination of these would give meaningful

results. In some cases, for example, separate viewpoints for the different layers are advisable.

Based on common architectural practice and on experiences with the use of ArchiMate models

in practical cases, useful combinations in the form of a set of basic viewpoints have been

defined. These are listed in Table 21. The table also shows the perspective for the viewpoint.

Some viewpoints have a scope that is limited to a single layer or aspect, when others link

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 153

multiple layers and/or aspects. The different viewpoints are grouped into categories that indicate

which direction and which elements the viewpoint is looking at:

1. Composition: viewpoints that define internal compositions and aggregations of elements.

2. Support: viewpoints where you are looking at elements that are supported by other

elements, typically from one layer and upwards to an above layer.

3. Cooperation: towards peer elements which cooperate with each other, typically across

aspects.

4. Realization: viewpoints where you are looking at elements that realize other elements,

typically from one layer and downwards to a below layer.

Table 21: Basic Viewpoints

Category: Composition

Name Perspective Scope

Organization Structure of the enterprise in terms of roles,

departments, etc.

Single layer, single aspect

Application Structure Shows the structure of a typical application

in terms of its constituents.

Single layer, multiple aspect

Information Structure Shows the structure of the information used

in the enterprise.

Multiple layer, single aspect

Technology Infrastructure and platforms underlying the

enterprise’s information systems in terms of

networks, devices, and system software.

Single layer, multiple aspect

Layered Provides overview of architecture(s). Multiple layer, multiple aspect

Physical Physical environment and how this relates to

IT infrastructure.

Multiple layer, multiple aspect

Category: Support

Name Perspective Scope

Product Shows the contents of products. Multiple layer, multiple aspect

Application Usage Relates applications to their use in, for

example, business processes.

Multiple layer, multiple aspect

Technology Usage Shows how technology is used by

applications.

Multiple layer, multiple aspect

Category: Cooperation

Name Perspective Scope

Business Process

Cooperation

Shows the relationships between various

business processes.

Multiple layer, multiple aspect

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

154 The Open Group Standard (2019)

Application Cooperation Shows application components and their

mutual relationships.

Application layer, multiple

aspect

Category: Realization

Name Perspective Scope

Service Realization Shows how services are realized by the

requisite behavior.

Multiple layer, multiple aspect

Implementation and

Deployment

Shows how applications are mapped onto the

underlying technology.

Multiple layer, multiple aspect

In the following sections, the ArchiMate viewpoints are described in more detail. For each

viewpoint the comprised elements are listed, guidelines for the viewpoint’s use, and the

stakeholders and concerns addressed by the viewpoint are indicated. In addition to the specified

elements, the grouping element, junction, and or junction can be used in every viewpoint. For

more details on the goal and use of viewpoints, refer to Chapter 14 of [1].

These basic viewpoints are starting points for modeling efforts. They can accelerate architectural

efforts, support organizational standards, facilitate peer review, and aid new modelers. However,

these basic viewpoints should not constrain modeling activities. Organizations and individual

modelers should address stakeholder concerns by selecting from the basic viewpoints, modifying

them, or defining new ones. The viewpoints listed here are therefore intended as examples, not

as a normative or exhaustive list.

As outlined before, a viewpoint’s representation should be geared towards the intended

stakeholder(s). This means that these basic viewpoints are mainly useful for architects and their

peers. Other stakeholders may require a different representation, even if they are interested in the

same content.

C.1.1 Organization Viewpoint

The organization viewpoint focuses on the (internal) organization of a company, department,

network of companies, or of another organizational entity. It is possible to present models in this

viewpoint as nested block diagrams, but also in a more traditional way, such as organizational

charts. The organization viewpoint is very useful in identifying competencies, authority, and

responsibilities in an organization.

Table 22: Organization Viewpoint Description

Organization Viewpoint

Stakeholders Enterprise, process and domain architects, managers, employees,

shareholders

Concerns Identification of competencies, authority, and responsibilities

Purpose Designing, deciding, informing

Scope Single layer/Single aspect

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 155

Elements

 Business actor

 Business role

 Business collaboration

 Location

 Business interface

C.1.2 Application Structure Viewpoint

The application structure viewpoint shows the structure of one or more applications or

components. This viewpoint is useful in designing or understanding the main structure of

applications or components and the associated data; e.g., to break down the structure of the

system under construction, or to identify legacy application components that are suitable for

migration/integration.

Table 23: Application Structure Viewpoint Description

Application Structure Viewpoint

Stakeholders Application and solution architects

Concerns Application structure, consistency and completeness, reduction of complexity

Purpose Designing

Scope Single layer/Multiple aspect

Elements

 Application component

 Application interface

 Application collaboration

 Data object

C.1.3 Information Structure Viewpoint

The information structure viewpoint is comparable to the traditional information models created

in the development of almost any information system. It shows the structure of the information

used in the enterprise or in a specific business process or application, in terms of data types or

(object-oriented) class structures. Furthermore, it may show how the information at the business

level is represented at the application level in the form of the data structures used there, and how

these are then mapped onto the underlying technology infrastructure; e.g., by means of a

database schema.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

156 The Open Group Standard (2019)

Table 24: Information Structure Viewpoint Description

Information Structure Viewpoint

Stakeholders Domain and information architects

Concerns Structure and dependencies of the used data and information, consistency and

completeness

Purpose Designing

Scope Multiple layer/Single aspect

Elements

 Business object

 Representation

 Data object

 Artifact

 Meaning

C.1.4 Technology Viewpoint

The technology viewpoint contains the software and hardware technology elements supporting

the Application Layer, such as physical devices, networks, or system software (e.g., operating

systems, databases, and middleware).

Table 25: Technology Viewpoint Description

Technology Viewpoint

Stakeholders Infrastructure architects, operational managers

Concerns Stability, security, dependencies, costs of the infrastructure

Purpose Designing

Scope Single layer/Multiple aspect

Elements

 Location

 Node

 Technology collaboration

 Device

 System software

 Technology interface

 Communication network

 Path

 Technology process/function/interaction

 Technology service

 Technology event

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 157

 Artifact

C.1.5 Layered Viewpoint

The layered viewpoint pictures several layers and aspects of an Enterprise Architecture in one

diagram. There are two categories of layers, namely dedicated layers and service layers. The

layers are the result of the use of the “grouping” relationship for a natural partitioning of the

entire set of objects and relationships that belong to a model. The technology, application,

process, and actor/role layers belong to the first category. The structural principle behind a fully

layered viewpoint is that each dedicated layer exposes, by means of the “realization”

relationship, a layer of services, which are further on “serving” the next dedicated layer. Thus,

we can easily separate the internal structure and organization of a dedicated layer from its

externally observable behavior expressed as the service layer that the dedicated layer realizes.

The order, number, or nature of these layers are not fixed, but in general a (more or less)

complete and natural layering of an ArchiMate model should contain the succession of layers

depicted in the example given in Table 26. However, this example is by no means intended to be

prescriptive. The main goal of the layered viewpoint is to provide an overview in one diagram.

Furthermore, this viewpoint can be used as support for impact of change analysis and

performance analysis or for extending the service portfolio.

Table 26: Layered Viewpoint Description

Layered Viewpoint

Stakeholders Enterprise, process, application, infrastructure, and domain architects

Concerns Consistency, reduction of complexity, impact of change, flexibility

Purpose Designing, deciding, informing

Scope Multiple layer/Multiple aspect

Elements

All core elements and all relationships are permitted in this viewpoint.

C.1.6 Physical Viewpoint

The physical viewpoint contains equipment (one or more physical machines, tools, or

instruments) that can create, use, store, move, or transform materials, how the equipment is

connected via the distribution network, and what other active elements are assigned to the

equipment.

Table 27: Physical Viewpoint Description

Physical Viewpoint

Stakeholders Infrastructure architects, operational managers

Concerns Relationships and dependencies of the physical environment and how this

relates to IT infrastructure

Purpose Designing

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

158 The Open Group Standard (2019)

Physical Viewpoint

Scope Multiple layer/Multiple aspect

Elements

 Location

 Node

 Device

 Equipment

 Facility

 Path

 Communication network

 Distribution network

 Material

C.1.7 Product Viewpoint

The product viewpoint depicts the value that these products offer to the customers or other

external parties involved and shows the composition of one or more products in terms of the

constituting (business, application, or technology) services, and the associated contract(s) or

other agreements. It may also be used to show the interfaces (channels) through which this

product is offered, and the events associated with the product. A product viewpoint is typically

used in product development to design a product by composing existing services or by

identifying which new services have to be created for this product, given the value a customer

expects from it. It may then serve as input for business process architects and others that need to

design the processes and ICT realizing these products.

Table 28: Product Viewpoint Description

Product Viewpoint

Stakeholders Product developers, product managers, process and domain architects

Concerns Product development, value offered by the products of the enterprise

Purpose Designing, deciding

Scope Multiple layer/Multiple aspect

Elements

 Business actor

 Business role

 Business collaboration

 Business interface

 Business process/function/interaction

 Business event

 Business service

 Business object

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 159

 Product

 Contract

 Application component/collaboration

 Application interface

 Application process/function/interaction

 Application event

 Application service

 Data object

 Technology service

 Artifact

 Material

 Value

C.1.8 Application Usage Viewpoint

The application usage viewpoint describes how applications are used to support one or more

business processes, and how they are used by other applications. It can be used in designing an

application by identifying the services needed by business processes and other applications, or in

designing business processes by describing the services that are available. Furthermore, since it

identifies the dependencies of business processes upon applications, it may be useful to

operational managers responsible for these processes.

Table 29: Application Usage Viewpoint Description

Application Usage Viewpoint

Stakeholders Enterprise, process, and application architects, operational managers

Concerns Consistency and completeness, reduction of complexity

Purpose Designing, deciding

Scope Multiple layer/Multiple aspect

Elements

 Business actor

 Business role

 Business collaboration

 Business process/function/interaction

 Business event

 Business object

 Application component/collaboration

 Application interface

 Application process/function/interaction

 Application event

 Application service

 Data object

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

160 The Open Group Standard (2019)

C.1.9 Technology Usage Viewpoint

The technology usage viewpoint shows how applications are supported by the software and

hardware technology: the technology services are delivered by the devices; system software and

networks are provided to the applications. This viewpoint plays an important role in the analysis

of performance and scalability, since it relates the physical infrastructure to the logical world of

applications. It is very useful in determining the performance and quality requirements on the

infrastructure based on the demands of the various applications that use it.

Table 30: Technology Usage Viewpoint Description

Technology Usage Viewpoint

Stakeholders Application, infrastructure architects, operational managers

Concerns Dependencies, performance, scalability

Purpose Designing

Scope Multiple layer/Multiple aspect

Elements

 Application component/collaboration

 Application process/function/interaction

 Application event

 Data object

 Node

 Device

 Technology collaboration

 System software

 Technology interface

 Communication network

 Path

 Technology process/function/interaction

 Technology service

 Technology event

 Artifact

C.1.10 Business Process Cooperation Viewpoint

The business process cooperation viewpoint is used to show the relationships of one or more

business processes with each other and/or with their environment. It can be used both to create a

high-level design of business processes within their context and to provide an operational

manager responsible for one or more such processes with insight into their dependencies.

Important aspects of business process cooperation are:

 Causal relationships between the main business processes of the enterprise

 Mapping of business processes onto business functions

 Realization of services by business processes

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 161

 Use of shared data

Each of these can be regarded as a “sub-viewpoint” of the business process cooperation

viewpoint.

Table 31: Business Process Cooperation Viewpoint Description

Business Process Cooperation Viewpoint

Stakeholders Process and domain architects, operational managers

Concerns Dependencies between business processes, consistency and completeness,

responsibilities

Purpose Designing, deciding

Scope Multiple layer/Multiple aspect

Elements

 Business actor

 Business role

 Business collaboration

 Location

 Business interface

 Business process/function/interaction

 Business event

 Business service

 Business object

 Representation

 Application component/collaboration

 Application interface

 Application process/function/interaction

 Application event

 Application service

 Data object

C.1.11 Application Cooperation Viewpoint

The application cooperation viewpoint describes the relationships between application

components in terms of the information flows between them, or in terms of the services they

offer and use. This viewpoint is typically used to create an overview of the application landscape

of an organization. This viewpoint is also used to express the (internal) cooperation or

orchestration of services that together support the execution of a business process.

Table 32: Application Cooperation Viewpoint Description

Application Cooperation Viewpoint

Stakeholders Enterprise, process, application, and domain architects

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

162 The Open Group Standard (2019)

Application Cooperation Viewpoint

Concerns Relationships and dependencies between applications,

orchestration/choreography of services, consistency and completeness,

reduction of complexity

Purpose Designing

Scope Application layer/Multiple aspect

Elements

 Location

 Application component/collaboration

 Application interface

 Application process/function/interaction

 Application event

 Application service

 Data object

C.1.12 Service Realization Viewpoint

The service realization viewpoint is used to show how one or more business services are realized

by the underlying processes (and sometimes by application components). Thus, it forms the

bridge between the business products viewpoint and the business process view. It provides a

“view from the outside” on one or more business processes.

Table 33: Service Realization Viewpoint Description

Service Realization Viewpoint

 Process and domain architects, product and operational managers

Concerns Added-value of business processes, consistency and completeness,

responsibilities

Purpose Designing, deciding

Scope Multiple layer/Multiple aspect

Elements

 Business actor

 Business role

 Business collaboration

 Business interface

 Business process/function/interaction

 Business event

 Business service

 Business object

 Representation

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 163

 Application component/collaboration

 Application interface

 Application process/function/interaction

 Application event

 Application service

 Data object

C.1.13 Implementation and Deployment Viewpoint

The implementation and deployment viewpoint shows how one or more applications are realized

on the infrastructure. This comprises the mapping of applications and components onto artifacts,

and the mapping of the information used by these applications and components onto the

underlying storage infrastructure.

Table 34: Implementation and Deployment Viewpoint Description

Implementation and Deployment Platform Viewpoint

Stakeholders Application and domain architects

Concerns Structure of application platforms and how they relate to supporting

technology

Purpose Designing, deciding

Scope Multiple layer/Multiple aspect

Elements

 Application component/collaboration

 Application interface

 Application process/function/interaction

 Application event

 Application service

 Data object

 System software

 Technology interface

 Path

 Technology process/function/interaction

 Technology service

 Artifact

C.2 Motivation Viewpoints

A number of standard viewpoints for modeling motivational aspects have been defined. Each of

these viewpoints presents a different perspective on modeling the motivation that underlies some

Enterprise Architecture and allows a modeler to focus on certain aspects. Therefore, each

viewpoint considers only a selection of the elements and relationships that have been described

in the preceding sections.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

164 The Open Group Standard (2019)

The following viewpoints are distinguished:

 The stakeholder viewpoint focuses on modeling the stakeholders, drivers, the assessments

of these drivers, and the initial goals to address these drivers and assessments

 The goal realization viewpoint focuses on refining the initial, high-level goals into more

concrete (sub-)goals using the aggregation relationship, and finally into requirements and

constraints using the realization relationship

 The goal contribution viewpoint focuses on modeling and analyzing the influence

relationships between goals (and requirements)

 The principles viewpoint focuses on modeling the relevant principles and the goals that

motivate these principles

 The requirements realization viewpoint focuses on modeling the realization of

requirements and constraints by means of core elements, such as actors, services,

processes, application components, etc.

 The motivation viewpoint covers the entire motivational aspect and allows use of all

motivational elements

All viewpoints are separately described below. For each viewpoint, its elements and

relationships, the guidelines for its use, and its goal and target group are indicated. Furthermore,

each viewpoint description contains example models. For more details on the goal and use of

viewpoints, refer to Chapter 14 of [1].

C.2.1 Stakeholder Viewpoint

The stakeholder viewpoint allows the analyst to model the stakeholders, the internal and external

drivers for change, and the assessments (in terms of strengths, weaknesses, opportunities, and

threats) of these drivers. Also, the links to the initial (high-level) goals that address these

concerns and assessments may be described. These goals form the basis for the requirements

engineering process, including goal refinement, contribution and conflict analysis, and the

derivation of requirements that realize the goals.

Table 35: Stakeholder Viewpoint Description

Stakeholder Viewpoint

Stakeholders Stakeholders, business managers, enterprise and ICT architects, business

analysts, requirements managers

Concerns Architecture mission and strategy, motivation

Purpose Designing, deciding, informing

Scope Motivation

Elements

 Stakeholder

 Driver

 Assessment

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 165

 Goal

 Outcome

C.2.2 Goal Realization Viewpoint

The goal realization viewpoint allows a designer to model the refinement of (high-level) goals

into more tangible goals, and the refinement of tangible goals into requirements or constraints

that describe the properties that are needed to realize the goals. The refinement of goals into sub-

goals is modeled using the aggregation relationship. The refinement of goals into requirements is

modeled using the realization relationship.

In addition, the principles may be modeled that guide the refinement of goals into requirements.

Table 36: Goal Realization Viewpoint Description

Goal Realization Viewpoint

Stakeholders Stakeholders, business managers, enterprise and ICT architects, business

analysts, requirements managers

Concerns Architecture mission, strategy and tactics, motivation

Purpose Designing, deciding

Scope Motivation

Elements

 Goal

 Principle

 Requirement

 Constraint

 Outcome

C.2.3 Requirements Realization Viewpoint

The requirements realization viewpoint allows the designer to model the realization of

requirements by the core elements, such as business actors, business services, business

processes, application services, application components, etc. Typically, the requirements result

from the goal refinement viewpoint.

In addition, this viewpoint can be used to refine requirements into more detailed requirements.

The aggregation relationship is used for this purpose.

Table 37: Requirements Realization Viewpoint Description

Requirements Realization Viewpoint

Stakeholders Enterprise and ICT architects, business analysts, requirements managers

Concerns Architecture strategy and tactics, motivation

Purpose Designing, deciding, informing

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

166 The Open Group Standard (2019)

Requirements Realization Viewpoint

Scope Motivation

Elements

 Goal

 Principle

 Requirement/constraint

 Outcome

 Value

 Meaning

 Core element

 Course of action

 Resource

 Capability

 Value stream

C.2.4 Motivation Viewpoint

The motivation viewpoint allows the designer or analyst to model the motivation aspect, without

focusing on certain elements within this aspect. For example, this viewpoint can be used to

present a complete or partial overview of the motivation aspect by relating stakeholders, their

primary goals, the principles that are applied, and the main requirements on services, processes,

applications, and objects.

Table 38: Motivation Viewpoint Description

Motivation Viewpoint

Stakeholders Enterprise and ICT architects, business analysts, requirements managers

Concerns Architecture strategy and tactics, motivation

Purpose Designing, deciding, informing

Scope Motivation

Elements

 Stakeholder

 Driver

 Assessment

 Goal

 Principle

 Requirement

 Constraint

 Outcome

 Value

 Meaning

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 167

C.3 Strategy Viewpoints

To describe strategic aspects of the enterprise, the viewpoints below have been defined. Each of

these viewpoints presents a different perspective on modeling the high-level strategic direction

and make-up of the enterprise and allows a modeler to focus on certain aspects. Therefore, each

viewpoint considers only a selection of the elements and relationships that have been described

in the preceding sections.

The following viewpoints are distinguished:

 The strategy viewpoint provides a high-level strategic overview of the strategies of the

enterprise, its capabilities, value streams, and resources, and the envisaged outcomes

 The capability map viewpoint provides an overview of the capabilities of the enterprise

 The value stream viewpoint shows an overview of value-creating steps in the enterprise

and the capabilities that support these

 The outcome realization viewpoint describes how high-level, business-oriented results are

produced by the capabilities and resources of the enterprise

 The resource map viewpoint provides a structured overview of the resources of the

enterprise

All viewpoints are separately described below. For each viewpoint, its elements and

relationships, the guidelines for its use, and its goal and target group are indicated. For more

details on the goal and use of viewpoints, refer to Chapter 14 of [1].

C.3.1 Strategy Viewpoint

The strategy viewpoint allows the Business Architect to model a high-level, strategic overview

of the strategies (courses of action) of the enterprise, the capabilities, value streams, and

resources supporting those, and the envisaged outcomes.

Table 39: Strategy Viewpoint Description

Strategy Viewpoint

Stakeholders CxOs, business managers, enterprise and business architects

Concerns Strategy development

Purpose Designing, deciding

Scope Strategy

Elements

 Course of action

 Capability

 Value stream

 Resource

 Outcome

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

168 The Open Group Standard (2019)

C.3.2 Capability Map Viewpoint

The capability map viewpoint allows the Business Architect to create a structured overview of

the capabilities of the enterprise. A capability map typically shows two or three levels of

capabilities across the entire enterprise. It can, for example, be used as a heat map to identify

areas of investment. In some cases, a capability map may also show specific outcomes delivered

by these capabilities.

Table 40: Capability Map Viewpoint Description

Capability Map Viewpoint

Stakeholders Business managers, enterprise and business architects

Concerns Architecture strategy and tactics, motivation

Purpose Designing, deciding

Scope Strategy

Elements

 Outcome

 Capability

 Resource

C.3.3 Value Stream Viewpoint

The value stream viewpoint allows the Business Architect to create a structured overview of a

value stream, the capabilities supporting the stages in that value stream, the value created, and

the stakeholders involved.

Table 41: Value Stream Viewpoint Description

Value Stream Viewpoint

Stakeholders Business managers, enterprise and business architects

Concerns Architecture strategy and tactics, motivation

Purpose Designing, deciding

Scope Strategy

Elements

 Value stream

 Capability

 Outcome

 Stakeholder

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 169

C.3.4 Outcome Realization Viewpoint

The outcome realization viewpoint is used to show how the highest-level, business-oriented

results are produced by the capabilities and underlying core elements.

Table 42: Outcome Realization Viewpoint Description

Outcome Realization Viewpoint

Stakeholders Business managers, enterprise and business architects

Concerns Business-oriented results

Purpose Designing, deciding

Scope Strategy

Elements

 Capability

 Value stream

 Resource

 Outcome

 Value

 Meaning

 Core element

C.3.5 Resource Map Viewpoint

The resource map viewpoint allows the Business Architect to create a structured overview of the

resources of the enterprise. A resource map typically shows two or three levels of resources

across the entire enterprise. It can, for example, be used as a heat map to identify areas of

investment. In some cases, a resource map may also show relationships between resources and

the capabilities they are assigned to.

Table 43: Resource Map Viewpoint Description

Resource Map Viewpoint

Stakeholders Business managers, enterprise and business architects

Concerns Architecture strategy and tactics, motivation

Purpose Designing, deciding

Scope Strategy

Elements

 Resource

 Capability

 Work package

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

170 The Open Group Standard (2019)

C.4 Implementation and Migration Viewpoints

The following standard viewpoints for modeling implementation and migration aspects are

distinguished:

 The project viewpoint is primarily used to model the management of architecture change

 The migration viewpoint is used to model the transition from an existing architecture to a

target architecture

 The implementation and migration viewpoint is used to model the relationships between

the programs and projects and the parts of the architecture that they implement

All viewpoints are described separately below. For each viewpoint the comprised elements and

relationships, the guidelines for the viewpoint use, and the goal and target group and of the

viewpoint are indicated. Furthermore, each viewpoint description contains example models. For

more details on the goal and use of viewpoints, refer to Chapter 14 of [1].

C.4.1 Project Viewpoint

A project viewpoint is primarily used to model the management of architecture change. The

“architecture” of the migration process from an old situation (current state Enterprise

Architecture) to a new desired situation (target state Enterprise Architecture) has significant

consequences on the medium and long-term growth strategy and the subsequent decision-

making process. Some of the issues that should be addressed by the models designed in this

viewpoint are:

 Developing a fully-fledged organization-wide Enterprise Architecture is a task that may

require several years

 All systems and services must remain operational regardless of the presumed

modifications and changes of the Enterprise Architecture during the change process

 The change process may have to deal with immature technology standards (e.g.,

messaging, security, data, etc.)

 The change has serious consequences for the personnel, culture, way of working, and

organization

Furthermore, there are several other governance aspects that might constrain the transformation

process, such as internal and external cooperation, project portfolio management, project

management (deliverables, goals, etc.), plateau planning, financial and legal aspects, etc.

Table 44: Project Viewpoint Description

Project Viewpoint

Stakeholders (Operational) managers, enterprise and ICT architects, employees,

shareholders

Concerns Architecture vision and policies, motivation

Purpose Deciding, informing

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 171

Project Viewpoint

Scope Implementation and Migration

Elements

 Goal

 Outcome

 Work package

 Implementation event

 Deliverable

 Business actor

 Business role

C.4.2 Migration Viewpoint

The migration viewpoint entails models and concepts that can be used for specifying the

transition from an existing architecture to a desired architecture. Since the plateau and gap

elements have been quite extensively presented in Section 13.2, here the migration viewpoint is

only briefly described and positioned by means of Table 45.

Table 45: Migration Viewpoint Description

Migration Viewpoint

Stakeholders Enterprise architects, process architects, application architects, infrastructure

architects and domain architects, employees, shareholders

Concerns History of models

Purpose Designing, deciding, informing

Scope Implementation and Migration

Elements

 Plateau

 Gap

C.4.3 Implementation and Migration Viewpoint

The implementation and migration viewpoint is used to relate programs and projects to the parts

of the architecture that they implement. This view allows modeling of the scope of programs,

projects, and project activities in terms of the plateaus that are realized or the individual

architecture elements that are affected. In addition, the way the elements are affected may be

indicated by annotating the relationships.

Furthermore, this viewpoint can be used in combination with the programs and projects

viewpoint to support portfolio management:

 The programs and projects viewpoint is suited to relate business goals to programs and

projects

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

172 The Open Group Standard (2019)

For example, this makes it possible to analyze at a high level whether all business goals

are covered sufficiently by the current portfolio(s).

 The implementation and migration viewpoint is suited to relate business goals (and

requirements) via programs and projects to (parts of) the architecture

For example, this makes it possible to analyze potential overlap between project activities

or to analyze the consistency between project dependencies and dependencies among

plateaus or architecture elements.

Table 46: Implementation and Migration Viewpoint Description

Implementation and Migration Viewpoint

Stakeholders (Operational) managers, enterprise and ICT architects, employees,

shareholders

Concerns Architecture vision and policies, motivation

Purpose Deciding, informing

Scope Multiple layer/Multiple aspect

Elements

 Goal

 Requirement

 Constraint

 Work package

 Implementation event

 Deliverable

 Plateau

 Gap

 Business actor

 Business role

 Location

 Core element

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 173

D Relationship to Other Standards, Specifications, and
Guidance Documents

This appendix describes the relationship of the ArchiMate language to other standards and

documents, including the TOGAF framework, the BIZBOK
®
 Guide, UML, BPMN, and BMM.

D.1 The TOGAF Framework

The ArchiMate language, as described in this standard, complements the TOGAF framework [4]

in that it provides a vendor-independent set of concepts, including a graphical representation,

that helps to create a consistent, integrated model “below the waterline”, which can be depicted

in the form of TOGAF views.

The structure of the ArchiMate core language closely corresponds with the three main

architectures as addressed in the TOGAF ADM. The strategy, motivation, implementation, and

migration elements approximately map onto the remainder of the ADM (although these elements

may also be used in Phases B, C, and D). This is illustrated in Figure 116. This correspondence

indicates a fairly easy mapping between TOGAF views and the ArchiMate viewpoints. A more

detailed description of this correspondence is given in [6].

Figure 116: Correspondence Between the ArchiMate Language and the TOGAF ADM

Although some of the viewpoints that are defined in the TOGAF standard cannot easily be

mapped onto ArchiMate viewpoints, the ArchiMate language and its analysis techniques support

the concepts addressed in these viewpoints. While there is no one-to-one mapping between

them, there is still a fair amount of correspondence between the ArchiMate viewpoints and the

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

174 The Open Group Standard (2019)

TOGAF viewpoints. Although corresponding viewpoints from the two standards do not

necessarily have identical coverage, many viewpoints from both address largely the same issues.

Moreover, the viewpoint mechanism described in Section 14.4 lends itself well to define

TOGAF viewpoints using ArchiMate concepts.

It is important to reiterate that the ArchiMate standard is a modeling language and not a

framework, and therefore the viewpoint definitions are more detailed and specify the

stakeholders, concerns, level of detail, or abstraction level, and also the entity types involved in

the viewpoints. In the TOGAF standard this is presented in a more general way, so sometimes

there cannot be a one-to-one mapping between the entities and some interpretation or

transformation will be required.

In conclusion, the TOGAF and ArchiMate standards can easily be used in conjunction:

 The two standards complement each other with respect to the definition of an architecture

development process and the definition of an Enterprise Architecture modeling language

 The two standards overlap in their use of viewpoints, and the concept of an underlying

common repository of architectural artifacts and models; i.e., they have a firm common

foundation

 The combined use of the two standards can support a better communication with

stakeholders

See [6] for a detailed explanation of how the TOGAF and ArchiMate standards can be used

together.

D.2 The BIZBOK Guide

The ArchiMate language provides many concepts that are suitable for modeling Business

Architectures. The core domains outlined in the BIZBOK Guide [18] – capabilities, value

streams, organization, and information – are explicitly covered by relevant concepts in the

Business Layer and strategy elements of the ArchiMate language. The other domains –

stakeholders, strategies, policies, products, initiatives, and metrics – can also be described easily

using appropriate ArchiMate concepts. The language supports key Business Architecture

techniques such as capability mapping, organization mapping, information mapping, and value

stream mapping, and with its extensive set of relationships it also covers the interconnections

between these domains such as value stream – capability cross-mapping; e.g., see Example 21.

More advanced descriptions are also possible. In the TOGAF Series Guide: Value Streams [17]

and the BIZBOK Guide, value streams are decomposed in a specific way. Stages in a value

stream are not connected via relationships where value is exchanged, as in Example 21. Rather,

the stages produce value items that are aggregated at a higher level into an overall value

proposition, and the entry and exit conditions for each stage are specified explicitly. In the

ArchiMate language, the former can be modeled with aggregation relationships and the latter

using constraints.

D.3 BPMN

Both the ArchiMate language and BPMN [12] can be used for modeling business processes.

Their aims are different, however. ArchiMate notation is typically used for high-level processes

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 175

and their relations to the enterprise context, but is not intended for detailed workflow modeling,

whereas BPMN supports detailed sub-process and task modeling down to the level of executable

specifications, but lacks the broader enterprise context, for example, to model the application

services that support a process or the goals and requirements it has to fulfill.

Both languages share the concepts of (business) process and event. In the ArchiMate notation

there is a single business process element that may be decomposed in other processes that are

related using flow and triggering relationships, possibly using junctions to represent more

complex connections. BPMN has a more fine-grained set of elements, with various types of

events, tasks, and gateways. Its metamodel also distinguishes explicitly between process and

sub-process (although it lacks a graphical representation of a business process itself). The BPMN

concept of participant (or pool) and the ArchiMate concepts of business role or business actor

(or application component for automated processes) also correspond.

In a typical scenario, both languages can be used in conjunction. Mapping from ArchiMate

notation down to BPMN is fairly straightforward. The other way around loses the detailed

elements of BPMN. Moreover, there are structural differences between the languages that

preclude a direct concept-to-concept mapping and may merit a pattern-based approach. A

detailed description of such a mapping is beyond the scope of this standard.

D.4 UML

The ArchiMate language has derived a number of concepts from UML [8]. For other concepts,

straightforward correspondences can be defined.

In the Business Layer, the ArchiMate business process concept can be mapped onto UML

activity diagrams, where more detailed specifications of such processes can be given (although

BPMN would be the preferred language for detailed process and workflow modeling). The

ArchiMate business actor and role concepts can both be mapped onto UML actors, although the

latter can also be used for modeling automated actors. Business collaborations have been

inspired by collaborations as defined in the UML standard [8], although the UML collaborations

apply to components in the Application Layer.

In the Application Layer, the application component element corresponds to the UML

component. This facilitates the direct linkage between higher-level Enterprise Architecture

models described in ArchiMate notation and lower-level solution architecture and

implementation models in UML in one continuous development chain. In a less direct manner,

the ArchiMate application function concept can be mapped onto UML activity diagrams, and an

application service to a use-case diagram. Application collaborations also correspond to UML

collaborations.

Many of the elements of the ArchiMate Technology Layer correspond directly to UML. The

node, artifact, device, system software, and path elements have a direct counterpart in UML

(where system software is called execution environment).

In addition to these elements, many relationships in the ArchiMate language have close ties to

UML as well. The ArchiMate association, composition, aggregation, specialization, and

realization relationships have a direct counterpart in UML.

There are also some notable differences between the two languages. The ArchiMate serving

relationship (formerly “used by”) is different from UML dependency. Although their notations

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

176 The Open Group Standard (2019)

are similar, their directions are different. UML dependency is often used to model, for example,

function calls in software programs, but in ArchiMate notation, the direction of the serving

relationship denotes the direction of service delivery, independent of whether this service is

called by the user or offered pro-actively by the provider. At the architectural level at which the

ArchiMate language is aimed, the run-time operational details of such call graphs are less

important than the more stable and generic notion of service provision.

This also points to another important difference: UML does not have a separate service concept,

since in its object-oriented paradigm the behavior expressed by a service is encapsulated within

the interface offering that behavior (i.e., its operations). The ArchiMate language differentiates

between interfaces and the services they provide to allow, for example, specifying that the same

service is offered through multiple interfaces. Hence, an ArchiMate application interface does

not equate directly with a UML interface.

Finally, UML has a predefined, fixed set of diagram types, whereas the ArchiMate viewpoint

mechanism allows for the construction of custom, stakeholder-oriented views on an architecture.

See [16] for a more detailed explanation about how the UML language and the ArchiMate

standard can be used together.

D.5 BMM

The ArchiMate strategy and motivation elements have been inspired partly by the Business

Motivation Model (BMM) [15]. BMM distinguishes between means, ends, and influencers and

assessments. It provides fairly detailed concepts for these categories. The ArchiMate course of

action element corresponds directly with the course of action element in BMM, whereas its

directive concepts can be modeled with the ArchiMate principle, requirement, and constraint

elements.

BMM concepts for modeling ends are typically mapped onto the ArchiMate goal element. Its

influencers correspond to the ArchiMate element of driver, whereas its assessments map directly

onto the ArchiMate assessment element.

Although a mapping between many of the ArchiMate motivation and implementation elements

and BMM concepts is possible, BMM provides a more detailed, fine-grained description of

business motivation. In that sense, it is comparable to the other languages described in this

appendix. Where the ArchiMate language aims to cover a broad scope and interlink various

domains, these more specialized languages zoom in on the details of their specific domains.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 177

E Changes from Version 2.1 to Version 3.1

E.1 Changes from Version 2.1 to Version 3.0.1

The main changes between Version 2.1 and Version 3.0 of the ArchiMate Specification are

listed below. Note that this is not an exhaustive list; various smaller improvements have been

made throughout the text of the document.

 Changed various definitions to increase alignment with the TOGAF framework

 Added an upper-level generic metamodel to explain the full structure of the language

 Restructured the set of relationships into structural, dynamic, dependency, and other

relationships

 Allowed relationships to other relationships in some cases; e.g., to associate objects with

flows or aggregate relationships within plateaus

 Improved the derivation of relationships

 Relaxed the constraints on relationships between layers in the ArchiMate core language

 Improved the grouping and junction concepts

 Renamed the “used by” relationship to “serving”, in line with the other active names of

relationships

 Changed the notation of the influence relationship for consistency with the other

dependency relationships (access and serving)

 Introduced a directional notation for the assignment relationship by replacing the black

circle at the “to” end by an arrow

 Added an optional notation to denote the layer of an element

A letter M, S, B, A, T, P, or I in the top-left corner of an element can be used to denote a

Motivation, Strategy, Business, Application, Technology, Physical, or Implementation &

Migration element, respectively.

 Changed the notation of the representation and contract elements, to distinguish these

from deliverable and business object, respectively

 Added events (with a time attribute) at all layers in the ArchiMate core language as well

as to the implementation and migration elements

 Renamed the Motivation Extension to motivation elements and introduced a new outcome

element

 Moved the value and meaning concepts from the Business Layer of the ArchiMate core

language to the motivation elements

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

178 The Open Group Standard (2019)

 Introduced new strategy elements for modeling the enterprise at a strategic level, notably

capability, resource, and course of action

 Moved the location element to the generic metamodel

 Abolished the “required interface” notation

 Renamed the elements in the Technology Layer from infrastructure x to technology x

 Added application process, technology process, technology interaction, and technology

collaboration, to increase the regularity of the layers

 Extended the Technology Layer with elements for modeling the physical world: facility,

equipment, material, and distribution network

 Renamed the “communication path” element to “path” and extended its meaning, to

integrate with the physical elements

 Improved the description of viewpoints and the viewpoints mechanism, removed the

introductory viewpoint, and moved the basic viewpoints listed in the standard to an

informative appendix to indicate they are intended as examples, not as a normative or

exhaustive list

 Replaced the examples throughout the document

 Described the relationships of the ArchiMate standard with several other standards

 Created new tables of relationships based on the changes in the metamodel and derivation

properties

ArchiMate 2.1 models are still mostly valid in ArchiMate 3.0.1. Two transformations may be

applied to ensure conformance to the new version of the standard:

 Rename “used by” relationships to “serving”

 If a relationship between two elements in a model is no longer permitted (according to

Appendix B), replace it by an association

If it concerns an assignment of an application component to a business process or

function, this may be replaced by a realization relationship from the application

component to the business process or function. If it concerns an assignment of a location

to another element, this may be replaced by an aggregation. In some cases, the modeler

may want to replace the location by a facility.

E.2 Changes from Version 3.0.1 to Version 3.1

The main changes between Version 3.0.1 and Version 3.1 of the ArchiMate Specification are

listed below. In addition to these changes, various other minor improvements in definitions and

other wording have been made.

 Introduced a new strategy element: value stream

 Added an optional directed notation for the association relationship

 Improved the organization of the metamodel and associated figures

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 179

 Further improved and formalized the derivation of relationships

The formalization of the derivation rules as mentioned above has had a minor impact on the

metamodel structure, since some relationships can now be derived that formerly had to be

specified explicitly in the metamodel. It has also led to the removal of a small number of

spurious relationships. To transform an ArchiMate 3.0.1 model to ArchiMate 3.1, any such

relationship may be replaced by a directed association.

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

180 The Open Group Standard (2019)

Acronyms

ABB Architecture Building Block

ADM Architecture Development Method (TOGAF framework)

ASCII American Standard Code for Information Interchange

B2B Business-to-Business

BMM Business Motivation Model

BPMN Business Process Model and Notation

CEO Chief Executive Officer

CFO Chief Financial Officer

CIO Chief Information Officer

CMO Chief Marketing Officer

CRM Customer Relationship Management

ERD Entity Relationship Diagram

GUI Graphical User Interface

HTML HyperText Markup Language

IoT Internet of Things

JEE Java, Enterprise Edition (was J2EE)

PDF Portable Document Format

RTF Rich Text Format

SBB Solution Building Block

SLA Service-Level Agreement

SWOT Strengths, Weaknesses, Opportunities, and Threats

UML Unified Modeling Language

WAN Wide Area Network

WLAN Wireless Local Area Network

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

ArchiMate® 3.1 Specification 181

Index

abstraction .. 10

access relationship 28, 29

active structure element 14

aggregation relationship 24

application collaboration 75

application component 74

application cooperation viewpoint 162

application event 78

application function 77

application interaction 78

application interface 75

Application Layer 7

Application Layer alignment 103

Application Layer metamodel 73

Application Layer specialization 120

application platform 84

application process 78

application service 79

application structure viewpoint 156

application usage viewpoint 160

ArchiMate Core Framework............... 3, 8

ArchiMate Full Framework 9

Architecture Building Block................. 20

architecture view 3, 112

architecture viewpoint 3, 112

artifact .. 94

aspect .. 4

assessment .. 42

assignment relationship 25

association relationship 28, 31

attribute .. 4, 117

baseline architecture 107

behavior element 13, 15, 17

business actor 59

business collaboration 60

business event 65

business function 64

business interaction 65

business interface 61

Business Layer 7

Business Layer alignment 102

Business Layer metamodel 58

Business Layer specialization............. 119

business object 67

business process 63

business process cooperation viewpoint

 ... 161

business role ... 60

business service 66

capability .. 52

capability map viewpoint 169

collaboration... 17

color, use of .. 11

communication network 87

composite element 4, 19

composition relationship 23

compound element specialization 123

concept ... 4

conceptual elements 10

concern ... 113

conformance ... 4

conforming implementation 4

constraint .. 45

contract ... 68

core element ... 4

core language ... 3

core layers .. 7

course of action 54

customization, language 117

data object .. 80

decision viewpoint 115

deliverable .. 106

dependency relationships 22, 28, 32

derivation of relationships 38, 129

design viewpoint 115

device ... 85

distribution network 99

driver .. 41

dynamic relationships..................... 22, 33

element ... 4, 6

equipment ... 98

ERD.. 11

event ... 16

external behavior element 15

facility .. 98

flow relationship 33

function .. 17

gap .. 107

generic metamodel 13

goal ... 43

goal realization viewpoint 166

grouping ... 20

iconography 1, 11

implementation and deployment

viewpoint 164

Implementation and Migration

metamodel 105

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

182 The Open Group Standard (2019)

implementation and migration viewpoint

 ... 172

implementation element specialization

 ... 123

implementation event 106

implementation viewpoint 171

influence relationship 28, 30

information structure viewpoint 156

informing viewpoint 115

interaction ... 17

interface .. 15

internal behavior element 15

junction ... 35

language concepts................................. 11

language design 6

language structure................................... 6

layer .. 5

layered viewpoint 158

layering ... 7

location ... 21

logical elements 10

material ... 99

meaning .. 47

migration viewpoint 171, 172

model .. 5, 6

motivation element 19

motivation element specialization 121,

123

motivation elements metamodel 40

motivation viewpoint 165, 167

nesting .. 11

node .. 84

notation ... 11

organization viewpoint 155

outcome .. 44

outcome realization viewpoint 170

passive structure element 16

path ... 87

physical element specialization 121

physical elements 7, 10

physical elements metamodel 97

physical viewpoint 158

plateau .. 107

principle .. 44

process .. 17

product .. 70

product viewpoint 159

profile ... 117

project viewpoint 171

realization relationship 26

relationship ... 5

relationship specialization 124

relationships ... 22

representation 68

requirement .. 45

requirements realization viewpoint 166

resource .. 51

resource map viewpoint 170

service .. 15

service realization viewpoint 163

serving relationship 28

Solution Building Block 20

specialization 118

specialization relationship 34

stakeholder 1, 41

stakeholder viewpoint 165

stereotype ... 118

strategy element specialization........... 122

strategy elements metamodel 51

strategy viewpoint 168

strategy viewpoints............................. 168

structural relationships 22, 23, 27

structure element 13, 17

system software 85

target architecture 107

technology collaboration 86

technology event 91

technology function 90

technology interaction 91

technology interface 86

Technology Layer 7

Technology Layer alignment 103

Technology Layer metamodel 83

Technology Layer specialization 120

technology process 90

technology service 92

technology usage viewpoint 161

technology viewpoint 157

transition architecture 107

triggering relationship 33

UML stereotype 122

value ... 47

value stream ... 53

value stream viewpoint 169

viewpoint 114, 153

viewpoint mechanism................. 111, 113

work package 105

© 2012-2019 The Open Group, All Rights Reserved
Personal PDF Edition. Not for redistribution

	Contents
	List of Figures
	List of Examples
	List of Tables
	Preface
	Trademarks
	Acknowledgements
	Referenced Documents
	1 Introduction
	1.1 Objective
	1.2 Overview
	1.3 Conformance
	1.4 Normative References
	1.5 Terminology
	1.6 Future Directions

	2 Definitions
	2.1 ArchiMate Core Framework
	2.2 ArchiMate Core Language
	2.3 Architecture View
	2.4 Architecture Viewpoint
	2.5 Aspect
	2.6 Attribute
	2.7 Composite Element
	2.8 Concept
	2.9 Conformance
	2.10 Conforming Implementation
	2.11 Core Element
	2.12 Element
	2.13 Layer
	2.14 Model
	2.15 Relationship

	3 Language Structure
	3.1 Language Design Considerations
	3.2 Top-Level Language Structure
	3.3 Layering of the ArchiMate Language
	3.4 The ArchiMate Core Framework
	3.5 The ArchiMate Full Framework
	3.6 Abstraction in the ArchiMate Language
	3.7 Concepts and their Notation
	3.8 Use of Nesting
	3.9 Use of Colors and Notational Cues

	4 Generic Metamodel
	4.1 Behavior and Structure Elements
	4.1.1 Active Structure Elements
	4.1.2 Behavior Elements
	4.1.3 Passive Structure Elements

	4.2 Specializations of Structure and Behavior Elements
	4.3 Summary of Structure and Behavior Elements
	4.4 Motivation Elements
	4.5 Composite Elements
	4.5.1 Grouping
	4.5.2 Location

	5 Relationships
	5.1 Structural Relationships
	5.1.1 Composition Relationship
	5.1.2 Aggregation Relationship
	5.1.3 Assignment Relationship
	5.1.4 Realization Relationship
	5.1.5 Semantics of Structural Relationships

	5.2 Dependency Relationships
	5.2.1 Serving Relationship
	5.2.2 Access Relationship
	5.2.3 Influence Relationship
	5.2.4 Association Relationship
	5.2.5 Semantics of Dependency Relationships

	5.3 Dynamic Relationships
	5.3.1 Triggering Relationship
	5.3.2 Flow Relationship
	5.3.3 Semantics of Dynamic Relationships

	5.4 Other Relationships
	5.4.1 Specialization Relationship
	5.4.2 Semantics of Other Relationships

	5.5 Relationship Connectors
	5.5.1 Junction

	5.6 Summary of Relationships
	5.7 Derivation of Relationships

	6 Motivation Elements
	6.1 Motivation Elements Metamodel
	6.2 Stakeholder, Driver, and Assessment
	6.2.1 Stakeholder
	6.2.2 Driver
	6.2.3 Assessment
	6.2.4 Example

	6.3 Goal, Outcome, Principle, Requirement, and Constraint
	6.3.1 Goal
	6.3.2 Outcome
	6.3.3 Principle
	6.3.4 Requirement
	6.3.5 Constraint
	6.3.6 Example

	6.4 Meaning and Value
	6.4.1 Meaning
	6.4.2 Value
	6.4.3 Example

	6.5 Summary of Motivation Elements
	6.6 Relationships with Core Elements

	7 Strategy Elements
	7.1 Strategy Elements Metamodel
	7.2 Structure Elements
	7.2.1 Resource

	7.3 Behavior Elements
	7.3.1 Capability
	7.3.2 Value Stream
	7.3.3 Course of Action

	7.4 Example
	7.5 Summary of Strategy Elements
	7.6 Relationships with Motivation and Core Elements

	8 Business Layer
	8.1 Business Layer Metamodel
	8.2 Active Structure Elements
	8.2.1 Business Actor
	8.2.2 Business Role
	8.2.3 Business Collaboration
	8.2.4 Business Interface
	8.2.5 Example

	8.3 Behavior Elements
	8.3.1 Business Process
	8.3.2 Business Function
	8.3.3 Business Interaction
	8.3.4 Business Event
	8.3.5 Business Service
	8.3.6 Example

	8.4 Passive Structure Elements
	8.4.1 Business Object
	8.4.2 Contract
	8.4.3 Representation
	8.4.4 Example

	8.5 Composite Elements
	8.5.1 Product
	8.5.2 Example

	8.6 Summary of Business Layer Elements

	9 Application Layer
	9.1 Application Layer Metamodel
	9.2 Active Structure Elements
	9.2.1 Application Component
	9.2.2 Application Collaboration
	9.2.3 Application Interface
	9.2.4 Example

	9.3 Behavior Elements
	9.3.1 Application Function
	9.3.2 Application Interaction
	9.3.3 Application Process
	9.3.4 Application Event
	9.3.5 Application Service
	9.3.6 Example

	9.4 Passive Structure Elements
	9.4.1 Data Object
	9.4.2 Example

	9.5 Summary of Application Layer Elements

	10 Technology Layer
	10.1 Technology Layer Metamodel
	10.2 Active Structure Elements
	10.2.1 Node
	10.2.2 Device
	10.2.3 System Software
	10.2.4 Technology Collaboration
	10.2.5 Technology Interface
	10.2.6 Path
	10.2.7 Communication Network
	10.2.8 Example

	10.3 Behavior Elements
	10.3.1 Technology Function
	10.3.2 Technology Process
	10.3.3 Technology Interaction
	10.3.4 Technology Event
	10.3.5 Technology Service
	10.3.6 Example

	10.4 Passive Structure Elements
	10.4.1 Artifact
	10.4.2 Example

	10.5 Summary of Technology Layer Elements

	11 Physical Elements
	11.1 Physical Elements Metamodel
	11.2 Active Structure Elements
	11.2.1 Equipment
	11.2.2 Facility
	11.2.3 Distribution Network

	11.3 Behavior Elements
	11.4 Passive Structure Elements
	11.4.1 Material

	11.5 Example
	11.6 Summary of Physical Elements

	12 Relationships Between Core Layers
	12.1 Alignment of the Business Layer and Lower Layers
	12.2 Alignment of the Application and Technology Layers
	12.3 Example

	13 Implementation and Migration Elements
	13.1 Implementation and Migration Elements Metamodel
	13.2 Implementation and Migration Elements
	13.2.1 Work Package
	13.2.2 Deliverable
	13.2.3 Implementation Event
	13.2.4 Plateau
	13.2.5 Gap
	13.2.6 Example
	13.2.7 Summary of Implementation and Migration Elements

	13.3 Relationships
	13.4 Relationships with Other Aspects and Layers

	14 Stakeholders, Architecture Views, and Viewpoints
	14.1 Introduction
	14.2 Stakeholders and Concerns
	14.3 Architecture Views and Viewpoints
	14.4 Viewpoint Mechanism
	14.4.1 Defining and Classifying Viewpoints
	14.4.2 Creating the View

	14.5 Example Viewpoints

	15 Language Customization Mechanisms
	15.1 Adding Attributes to ArchiMate Elements and Relationships
	15.2 Specialization of Elements and Relationships
	15.2.1 Examples of Specializations of Business Layer Elements (Informative)
	15.2.2 Examples of Specializations of Application Layer Elements (Informative)
	15.2.3 Examples of Specializations of Technology Layer Elements (Informative)
	15.2.4 Examples of Specializations of Physical Elements (Informative)
	15.2.5 Examples of Specializations of Motivation Elements (Informative)
	15.2.6 Examples of Specializations of Strategy Elements (Informative)
	15.2.7 Examples of Specializations of Implementation and Migration Elements (Informative)
	15.2.8 Examples of Specializations of Composite Elements (Informative)
	15.2.9 Examples of Specializations of Relationships (Informative)

	A Summary of Language Notation
	A.1 Core Elements
	A.2 Motivation, Strategy, Implementation and Migration Elements
	A.3 Relationships

	B Relationships (Normative)
	B.1 Specification of Derivation Rules
	B.2 Derivation Rules for Valid Relationships
	B.2.1 Valid Derivations for Specialization Relationships
	DR 1: Transitivity of Specialization

	B.2.2 Valid Derivations for Structural Relationships
	DR 2: Derivation Between Structural Relationships

	B.2.3 Valid Derivations for Dependency Relationships
	DR 3: Derivation Between Structural and Dependency Relationships
	DR 4: Derivation Between Opposing Structural and Dependency Relationships

	B.2.4 Valid Derivations for Dynamic Relationships
	DR 5: Derivation Between Structural and Dynamic Relationships
	DR 6: Derivation Between Structural and Flow Relationships
	DR 7: Derivation Between Structural and Triggering Relationships
	DR 8: Derivation Between Triggering Relationships

	B.3 Derivation Rules for Potential Relationships
	B.3.1 Potential Derivation for Specialization Relationships
	PDR 1: Derivation with Specialization and Other Relationships
	PDR 2: Derivation with Specialization and Other Relationships
	PDR 3: Potential Derivation Between Specialization and Any Other Relationship
	PDR 4: Potential Derivation Between Specialization and Any Other Relationship

	B.3.2 Potential Derivation for Structural and Dependency Relationships
	PDR 5: Potential Derivation Between Structural and Dependency Relationships
	PDR 6: Potential Derivation Between Structural and Dependency Relationships

	B.3.3 Potential Derivation for Dependency Relationships
	PDR 7: Potential Derivation Between Dependency Relationships

	B.3.4 Potential Derivation for Dynamic Relationships
	PDR 8: Potential Derivation Between Structural and Dynamic Relationships
	PDR 9: Potential Derivation Between Structural and Dynamic Relationships
	PDR 10: Potential Derivation Between Flow Relationships
	PDR 11: Potential Derivation Between Triggering and Structural Relationships

	B.4 Restrictions on Applying Derivation Rules
	B.5 Relationship Tables
	B.6 Grouping, Plateau, and Relationships Between Relationships

	C Example Viewpoints
	C.1 Basic Viewpoints in the ArchiMate Language
	C.1.1 Organization Viewpoint
	C.1.2 Application Structure Viewpoint
	C.1.3 Information Structure Viewpoint
	C.1.4 Technology Viewpoint
	C.1.5 Layered Viewpoint
	C.1.6 Physical Viewpoint
	C.1.7 Product Viewpoint
	C.1.8 Application Usage Viewpoint
	C.1.9 Technology Usage Viewpoint
	C.1.10 Business Process Cooperation Viewpoint
	C.1.11 Application Cooperation Viewpoint
	C.1.12 Service Realization Viewpoint
	C.1.13 Implementation and Deployment Viewpoint

	C.2 Motivation Viewpoints
	C.2.1 Stakeholder Viewpoint
	C.2.2 Goal Realization Viewpoint
	C.2.3 Requirements Realization Viewpoint
	C.2.4 Motivation Viewpoint

	C.3 Strategy Viewpoints
	C.3.1 Strategy Viewpoint
	C.3.2 Capability Map Viewpoint
	C.3.3 Value Stream Viewpoint
	C.3.4 Outcome Realization Viewpoint
	C.3.5 Resource Map Viewpoint

	C.4 Implementation and Migration Viewpoints
	C.4.1 Project Viewpoint
	C.4.2 Migration Viewpoint
	C.4.3 Implementation and Migration Viewpoint

	D Relationship to Other Standards, Specifications, and Guidance Documents
	D.1 The TOGAF Framework
	D.2 The BIZBOK Guide
	D.3 BPMN
	D.4 UML
	D.5 BMM

	E Changes from Version 2.1 to Version 3.1
	E.1 Changes from Version 2.1 to Version 3.0.1
	E.2 Changes from Version 3.0.1 to Version 3.1

	Acronyms
	Index

